

Djem Documentation

Djem is a collection of useful stuff for Django projects.

Requirements

	Django 2.2+

	pytz [http://pytz.sourceforge.net/] is required to make use of models.TimeZoneField, forms.TimeZoneField and TimeZoneHelper.

Installation

Install the latest stable version from PyPI:

pip install djem

Features

	Object-Level Permissions
	Introduction

	Checking Permissions

	Advanced Features

	Instance-based Logging
	Nested logs

	Duplicate names

	Persistence

	Thread safety

	Models
	Auditable

	Archivable

	Versionable

	Mixing Mixins

	StaticAbstract

	TimeZoneField

	Rendering Forms
	form_field

	checkbox

	Extra CSS classes

	Extra HTML attributes

	Rendering in bulk

	Pagination
	In the view

	In the template

	AJAX
	Checking authentication

	Responding to AJAX requests

	CSRF

	XSS

	The messages framework

	Testing
	Test-only models

	Enhanced request factory

	Rendering string-based templates

	Utils
	UNDEFINED

	API Reference
	Model Mixins and QuerySets

	Model Fields

	Form Classes and Mixins

	Form Fields

	Auth

	Pagination

	Middleware

	AJAX

	Template Tags

	Utils

	Settings

	Exceptions

	Change Log
	0.8.0 (2022-12-12)

	0.7.2 (2021-10-05)

	0.7.1 (2021-08-25)

	0.7 (2021-08-24)

	0.6.4 (2018-12-06)

	0.6.3 (2018-12-06)

	0.6.2 (2018-03-25)

	0.6.1 (2018-03-02)

	0.6 (2018-03-02)

	0.5 (unreleased)

	0.4.3 (2016-09-17)

	0.4.2 (2016-06-21)

	0.4.1 (2016-06-21)

	0.4 (2016-06-21)

	0.3 (2016-03-19)

	Pre-0.3

License

Djem is released under the BSD license [https://github.com/oogles/djem/blob/master/LICENSE].

Object-Level Permissions

Django’s permissions framework has the foundation for, but no implementation of, object-level permissions (OLP). The permissions it supports apply to all records of a particular model - hence they are “model-level” permissions (MLP). For example, using the standard Django “polls” application to illustrate, you can use the Django permissions framework to determine if any given user can change Questions, but not to determine if they can change a given Question in particular.

Djem provides a very simple implementation of an OLP system, described in the following sections:

	Introduction
	Enabling

	Supported permissions

	Defining permissions

	Permissions default open

	Checking Permissions
	Protecting views

	Checking in templates

	Checking via User instances

	Caching

	Advanced Features
	Superusers

	Clearing the permission cache

	Automatically logging permission checks

Introduction

Djem’s object-level permission (OLP) system provides following features:

	As with model-level permissions, an object-level permission may be granted to a user based on the User object itself, or based on a Group to which the user belongs.

	Permissions are only checked at the object level if the user has the model-level permission. That is, a user must be able to change Questions in general if they are to be granted permission to change a particular Question.

	Methods on the object itself grant or deny the permission, based on self-contained logic. The database is not required to store links between users/groups and individual model objects.

Note

Djem’s OLP system is simply an extension of the default Django permissions system. As such, it expects the User model to have the same attributes and methods that power that system. If you are using a custom user model (as is recommended), it should either inherit from AbstractUser or include the PermissionsMixin to be compatible. See the Django documentation for custom user models and permissions [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#custom-users-and-permissions].

Enabling

Basic usage of object-level permissions is enabled simply by including the custom djem.auth.ObjectPermissionsBackend authentication backend in the AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',
 'djem.auth.ObjectPermissionsBackend'
]

See the Django documentation on authentication backends [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#specifying-authentication-backends] for more information.

More advanced features require additional steps. These are outlined in Advanced Features.

Supported permissions

Any existing permission can be used with the OLP system, though it may not make sense for all of them. For example, Django provides default “add” permissions for all models. It doesn’t make sense for adding to involve object-level permissions, as no object would yet exist on which to check for an “add” permission. That being said, the OLP system contains no logic preventing you from using any permission at the object level.

If the default Django-provided permissions (“add”, “change” and “delete”) aren’t enough, you can add custom permissions via the permissions attribute of a model’s inner Meta class, as per the Django documentation [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#custom-permissions].

Any permissions added this way are automatically supported by the OLP system. You just need to define the necessary methods on the model class, as described below. And remember: a user must have the standard, model-level permission before object-level permissions will even be checked.

Defining permissions

Object-level permissions are ultimately determined by specially-named methods on the object in question. These are the object-level access methods. The two types of access methods are:

	_user_can_<permission_name>(self, user): Grant/deny permission based on the given User instance by returning True or False, respectively.

	_group_can_<permission_name>(self, groups): Grant/deny permission based on the given Group queryset by returning True or False, respectively.

For the Django default “change” permission on the polls.Question model, the method names would be: _user_can_change_question() and _group_can_change_question().

When defining custom permissions, the permission name used in the method names must be the same as that provided in the permissions attribute of the model’s Meta class. If either of the methods returns True, the user is granted the permission.

The following example demonstrates how to define a model that uses object-level permissions for a custom permission. It uses a modified version of the Question model created in the Django tutorial [https://docs.djangoproject.com/en/stable/intro/tutorial02/#creating-models] that only allows voting by explicitly defined users.

from django.conf import settings
from django.db import models

class Question(models.Model):

 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')
 allowed_voters = models.ManyToManyField(settings.AUTH_USER_MODEL)

 def _user_can_vote_on_question(self, user):

 return self.allowed_voters.filter(pk=user.pk).exists()

 class Meta:
 permissions = (('vote_on_question', 'Can vote on question'),)

Note

The ObjectPermissionsBackend handles calling these methods when necessary - they should never need to be called manually. See Checking Permissions.

Note

These object-level access methods can raise PermissionDenied and it will be treated as if they returned False. Regardless of whether the user-based or group-based check raises the exception, the other could still grant the permission.

Permissions default open

An important concept in Djem’s OLP system is that permissions default open at the object level. That is to say, unless explicit logic is given to dictate how an object-level permission should be granted/denied, it is assumed to be granted. As such, an OLP check on an object with no defined object-level access methods is equivalent to a model-level check for the same permission.

This makes the system interchangeable with the default Django permissions system. Common code can check permissions at the object level and will be unaffected if no object-level access control exists for a given model - it doesn’t need to pick and choose whether to use object-level or model-level permission checking.

Checking Permissions

The main ways of using the OLP system to check a user’s permissions on a specific object are:

	the permission_required decorator for function-based views or PermissionRequiredMixin mixin for class-based views

	the ifperm and ifnotperm template tags

	the has_perm() method on a User instance

All of these approaches use the standard Django permissions system and rely on the custom ObjectPermissionsBackend to call the appropriate object-level access methods. In the examples below, each permission check will result in _user_can_<permission_name> being called and provided the User instance involved in the check, and _group_can_<permission_name> being called and provided with a queryset of all Groups to which that user belongs. Either method can return True to grant the user permission.

Warning

The object on which a permission is checked is not verified. That is, you could check the polls.vote_on_question permission on an instance of any random model and no warning would be given (checking validity would add unnecessary overhead to such a common operation). This is important because, if the instance provided does not define the appropriate object-level access methods, the permission is assumed to be granted at the object level, since permissions default open.

Many of the below examples draw on the sample polls.Question model introduced in the documentation on defining access methods:

from django.conf import settings
from django.db import models

class Question(models.Model):

 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')
 allowed_voters = models.ManyToManyField(settings.AUTH_USER_MODEL)

 def _user_can_vote_on_question(self, user):

 return self.allowed_voters.filter(pk=user.pk).exists()

 class Meta:
 permissions = (('vote_on_question', 'Can vote on question'),)

Protecting views

Protecting views that should only be accessed by users with certain object-level permissions is supported by Djem’s extensions of the standard Django permission_required decorator (for function-based views) and PermissionRequiredMixin mixin (for class-based views).

See the Django documentation for the decorator [https://docs.djangoproject.com/en/stable/topics/auth/default/#the-permission-required-decorator] and the mixin [https://docs.djangoproject.com/en/stable/topics/auth/default/#the-permissionrequiredmixin-mixin] for the basic functionality these helpers provide.

Checking an object-level permission involves querying for an instance of the model the permission is for. If such an instance cannot be found, a Http404 exception is raised.

New in version 0.5: The permission_required() decorator and the PermissionRequiredMixin class-based view mixin.

Basic usage

Usage of Djem’s permission_required() and PermissionRequiredMixin is very similar to the originals except that specifying an object-level permission is done using a tuple of two strings: the first naming the permission, the second naming the view function keyword argument that contains the primary key of the object to test.

Model-level permissions can still be checked by specifying a plain string as per usual.

A mixture of multiple model-level and object-level permissions is also fully supported. In this case, permissions are checked in the order they are listed, and a user must pass every check in order to access the view.

from django.views import View
from djem.auth import PermissionRequiredMixin, permission_required

Check a model-level permission on a function-based view
@permission_required('polls.view_questions')
def cast_vote(request, question):
 ...

Check an object-level permission on a function-based view
@permission_required(('polls.vote_on_question', 'question'))
def cast_vote(request, question):
 ...

Check a mixture of permissions on a function-based view
@permission_required('polls.view_questions', ('polls.vote_on_question', 'question'))
def cast_vote(request, question):
 ...

Check a model-level permission on a class-based view
class CastVote(PermissionRequiredMixin, View):

 permission_required = 'polls.view_questions'
 ...

Check an object-level permission on a class-based view
class CastVote(PermissionRequiredMixin, View):

 permission_required = [('polls.vote_on_question', 'question')]
 ...

Check a mixture of permissions on a class-based view
class CastVote(PermissionRequiredMixin, View):

 permission_required = ['polls.view_questions', ('polls.vote_on_question', 'question')]
 ...

Note

When specifying a single object-level permission using the permission_required attribute of PermissionRequiredMixin, it must be given as an item of a sequence (e.g. a list). While a single model-level permission can be provided as either a plain string or a single-item sequence (a feature inherited from Django’s own mixin class), because an object-level permission is defined in a tuple - which is itself an sequence - it would be treated as two model-level permissions (and would be invalid).

PermissionRequiredMixin and the URLconf

Like all attributes of class-based views, the permission_required attribute added by PermissionRequiredMixin can be specified/overridden in the URLconf:

from django.conf.urls import url
from .views import CastVote

urlpatterns = [
 url(
 r'^question/(?P<question>\d+)/votes/cast/$',
 CastVote.as_view(permission_required=['polls.view_questions', ('polls.vote_on_question', 'question')]),
 name='cast-vote'
)
]

Controlling denied access

As with the originals, login_url and raise_exception are fully supported - as arguments to the permission_required() decorator or as attributes of a class inheriting from PermissionRequiredMixin. These allow additional control over what happens when a user is denied access to a view protected by the decorator/mixin. See the Django documentation for permission_required [https://docs.djangoproject.com/en/stable/topics/auth/default/#the-permission-required-decorator] for more info on how these features work.

Djem extends this control slightly with the DJEM_DEFAULT_403 setting. This setting can be used to control the default value of raise_exception. Django’s default is to NOT raise the PermissionDenied exception, preferring to redirect to the login view, but allowing you to override this behaviour per-view using raise_exception. Setting DJEM_DEFAULT_403 to True allows you to configure all protected views to raise the PermissionDenied exception by default, while still allowing per-view customisation with raise_exception.

Argument replacement

When using either permission_required() or PermissionRequiredMixin to protect a view using object-level permissions, and the user passes all permission checks, any arguments named in an OLP two-tuple will be replaced with the appropriate instances.

These instances will already have been queried in order to check the user’s permissions against them, so they are injected into the view’s keyword arguments, replacing those that specified the primary key used in the queries. This allows the view to access such instances without needing to query for them again.

In the “cast vote” view examples used above, the view accepts a question keyword argument. This argument is named as the source of the primary key of a Question record, and used to check the user’s polls.vote_on_question permission against that specific Question. While the view was originally passed the primary key of a Question (as controlled by the URLconf), this is used and replaced as part of the permissions check, and the view sees a Question instance.

Checking in templates

Checking object-level permissions in a Django template can be done using the ifperm and ifnotperm template tags. These are block tags whose content is displayed if the permissions check passes. For ifperm, it passes if the user has the permission. For ifnotperm, it passes if the user does not have the permission. Each tag supports an else block, whose content is displayed if the permissions check fails.

Each tag must be passed a user instance, the name of the permission to check and the object to check it on.

{% load djem %}
...
{% ifperm user 'polls.vote_on_question' question_obj %}
 Vote Now
{% else %}
 You do not have permission to vote on this question.
{% endifperm %}
...

{% load djem %}
...
{% ifnotperm user 'polls.vote_on_question' question_obj %}
 You do not have permission to vote on this question.
{% else %}
 Vote Now
{% endifnotperm %}
...

Checking via User instances

The has_perm() method provided by Django’s User model (or by PermissionsMixin if using a custom user model) accepts an optional obj argument. Django does nothing with it by default, but passing it will invoke Djem’s OLP system. Thus it can be used to check a user’s object-level permissions on a given object.

Continuing with the modified Question model defined above:

>>> user = User.objects.get(username='alice')
>>> question = Question.objects.filter(voters=user).first()
>>> user.has_perm('polls.vote_on_question', question)
True

>>> question = Question.objects.exclude(voters=user).first()
>>> user.has_perm('polls.vote_on_question', question)
False

See has_perm() documentation for User [https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User.has_perm] and PermissionsMixin [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.PermissionsMixin.has_perm].

Other PermissionsMixin methods

The OLP system is fully compatible with Django’s PermissionsMixin, meaning it supports more than just the has_perm() method. Other supported methods include:

	has_perms(): For checking multiple permissions against a particular object at once.

	get_all_permissions(): To obtain a list of all permissions accessible to the user, either directly or via their groups, with all necessary object-level logic applied.

	get_group_permissions(): To obtain a list of all permissions accessible to the user via their groups only, with all necessary object-level logic applied.

While has_perms() is a simple extension of has_perm() to allow checking multiple permissions at once, some care should be taken with get_all_permissions() and get_group_permissions().

Firstly, depending on the number of permissions your project uses, the amount that have object-level access methods defined, and the complexity of the logic used by those access methods, obtaining a list of available permissions could involve a lot of processing (compared to testing one at a time).

More subtly, get_group_permissions() can potentially list permissions that would not actually be granted to the user via a standard permissions checking. This is a side-effect of the fact that object-level permissions default open. If a user-based object-level access method denied a certain permission, and no group-based access method was defined, a normal permissions check would return False, on account of the user-based check. But a group-only check, such as performed by get_group_permissions() would grant the permission, due to there being no object-level access method to indicate otherwise.

While not accessible via PermissionsMixin, ObjectPermissionsBackend also contains a get_user_permissions() method which suffers from the same side-effect due to ignoring group-based access methods.

Caching

Like ModelBackend does for model-level permissions [https://docs.djangoproject.com/en/stable/topics/auth/default/#permission-caching], ObjectPermissionsBackend caches object-level permissions on the User object after the first time they are checked. Unlike ModelBackend, the user’s entire set of object-level permissions are not determined and cached on this first access, only the specific permission being tested, for the specific object given.

This caching system has the same advantages and disadvantages as that used at the model level. Multiple checks of the same permission (on the same object) in the same request will only need to execute the (possibly expensive) logic in your object-level access methods once. However, that means that if something changes within the request that would alter the state of a permission, and that permission has already been checked, the User object will not immediately reflect the new state of the permission. Exactly what might affect the state of a permission depends entirely upon the logic implemented in the _user_can_<permission_name>()/_group_can_<permission_name>() methods, so this is something to be aware of both while writing these methods and while using them.

Clearing the cache is possible by querying for a new instance of the User or, depending on how your user model is configured, using the cache-clearing helper method.

Advanced Features

Basic use of Djem’s OLP system is a simple drop-in extension of Django’s own permissions system, enabled by ObjectPermissionsBackend. If your user model, no matter how it is defined, is compatible with Django’s default permissions system, it will be compatible with the OLP system as well.

However, more advanced features are available that require a higher level of configuration. Specifically, they require a custom user model - they will not be available if simply making use of Django’s included auth.User model. Django recommends using [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project] a custom user model anyway (for new projects, at least), even if it doesn’t actually customise anything.

To enable these advanced features, described below, your custom user model must include the OLPMixin.

If not looking to actually customise anything, a custom user model incorporating OLPMixin is as simple as:

from django.contrib.auth.models import AbstractUser

from djem.models import OLPMixin

class User(OLPMixin, AbstractUser):

 pass

If looking to customise the user model more heavily (for example, using an email address instead of a username as the user’s identification token), use something like the following:

from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin

from djem.models import OLPMixin

class User(OLPMixin, AbstractBaseUser, PermissionsMixin):

 ...

New in version 0.7: OLPMixin

Important

OLPMixin must be listed ahead of AbstractUser/PermissionsMixin in order for it to work correctly.

Superusers

The Django permissions system automatically grants any and all permissions to a User instance with the is_superuser flag set to True. By default, this is how the OLP system operates as well: no object-level access methods are executed, the superuser is simply granted the permission.

There are, however, situations in which this is not desirable. For example, you may want to define a model that does not grant the “delete” permission to anyone but the user that created it, no matter how “super” the user is. It would be trivial to configure the model to achieve this for a standard user, but a superuser would bypass any custom object-level access methods and be granted the permission anyway.

Djem provides a means of forcing superusers to be subject to the same OLP logic as regular users. They are still implicitly granted all permissions at the model level, but any object-level access methods will be executed and can deny the user permission.

In order to enable this feature, two things are required:

	A custom user model including OLPMixin, as described above.

	The DJEM_UNIVERSAL_OLP setting set to True.

With these two requirements met, object-level permissions will be applied “universally”, including for superusers.

Note

Enabling this feature will cause superusers to be subject to the OLP logic for all permissions that define some. If your project contains permissions which should still be granted to superusers regardless of the additional checks that standard users are subject to, the relevant access method can include a simple guard clause:

def _user_can_vote_on_question(self, user):

 if user.is_superuser:
 return True

 # Do custom logic
 ...

Clearing the permission cache

As described in Caching, the results of object-level permission checks are cached, which has the downside of the results potentially getting out-of-date if elements of the state used to determine the permission are changed.

By default, the only way to clear this cache is to re-query for a new user instance. This is particularly annoying if needing to replace the user instance on the request object. OLPMixin provides a clear_perm_cache() method, which, as the name suggests, clears the permissions cache on the user instance.

In addition to clearing the OLP cache, clear_perm_cache() also clears Django’s model-level permissions caches, for good measure.

Automatically logging permission checks

OLPMixin leverages instance-based logging to support automatically logging all permission checks made via its overridden has_perm() method - both model-level and object-level.

Read the documentation for the instance-based logging functionality provided by Loggable for an introduction to the system. OLPMixin inherits from Loggable, and thus offers all the same features, in addition to those specific to permissions.

There are multiple levels of automatic permission logging available, controlled via the DJEM_PERM_LOG_VERBOSITY setting:

	0: No automatic logging

	1: Logs are automatically created for each permission check, with minimal automatic entries

	2: Logs are automatically created for each permission check, with more informative automatic entries

Using a setting above 0 configures has_perm() to create an appropriately-named log and populate it with automated entries as appropriate (based on the verbosity level chosen). In addition to the automated entries, having a suitable log already created and active provides a simpler experience if utilising logging in object-level access methods. Revisiting the “delete_product” access method described in the instance-based logging examples, enabling automatic logging allows for a simpler method definition:

class Product(models.Model):

 code = models.CharField(max_length=20)
 name = models.CharField(max_length=100)
 active = models.BooleanField(default=True)
 supplier = models.ForeignKey(Supplier, on_delete=models.PROTECT)

 def _user_can_delete_product(self, user):

 if self.active:
 user.log('Cannot delete active product lines')
 return False
 elif get_quantity_in_stock(self):
 user.log('Cannot delete products with stock on hand')
 return False
 elif not user.has_perm('inventory.manage_supplier', self.supplier):
 inner_log = user.get_last_log(raw=True)
 user.log(*inner_log)
 return False

 user.log('Product can be deleted')
 return True

Log output

Using the “delete_product” permission from the above Product model as a reference, the output of a permission check with a DJEM_PERM_LOG_VERBOSITY setting of 1 might look something like:

Model-level Result: Granted

Cannot delete active product lines

RESULT: Permission Denied

And with a DJEM_PERM_LOG_VERBOSITY of 2:

Permission: inventory.delete_product
User: user.name (54)
Object: PROD123 (1375)

Model-level Result: Granted

Cannot delete active product lines

RESULT: Permission Denied

Log names

Retrieving automatically generated permission logs via get_log() requires knowing their name. As long as you know the name of the permission that was checked, and the primary key of the object it was checked against (where applicable), the name of the log can be easily determined:

For model-level permission checks: auto-<permission_name> (e.g. auto-inventory.delete_product)

For object-level permission checks: auto-<permission_name>-<object_id> (e.g. auto-inventory.delete_product-1375)

Instance-based Logging

The Loggable mixin provides a series of methods for creating, storing, and retrieving “instance-based” logs - that is, logs that are specific to an instance of a class incorporating Loggable. These logs can be used for anything - recording events, detailing the steps taken by a complex process, etc. Each log is created with its own name, and can be later retrieved from the instance using that name. The logs themselves are maintained as Python lists - each item in the list being a separate entry, or line, in the log. This allows them to be easily appended to over time.

When a new log is created, it becomes the “active” log for that instance - the one to which new log entries are appended. There can only be one active log on an instance at a time. If another log is active when a new log is created, it gets pushed back in the queue, and will become active again when the new log is finished. Logs must be explicitly declared “finished” in order to both re-activate previous logs and also to enable retrieving the log (unfinished logs cannot be retrieved).

The logs are stored internally on the instance. They will persist for the lifetime of that instance. No support for more persistent storage of these logs is included, but it is possible.

The methods available are:

	start_log(): Create a new log with a given name, making it the active log.

	log(): Add a new entry to the active log.

	end_log(): Mark the active log as finished.

	discard_log(): Remove the active log.

	get_log(): Retrieve a log with the given name.

	get_last_log(): Retrieve the most recently finished log.

By default, get_log() and get_last_log() retrieve logs as strings, but copies of the internal lists can be retrieved by passing raw=True to either method.

OLPMixin, used to provide advanced features to Djem’s object-level permissions system, inherits from Loggable. Keeping user-based logs of permission checks is the primary use of instance-based logging. The examples in this documentation use user-based logging in object-level permission access methods to illustrate the supported features of Loggable. While OLPMixin provides support for automatically logging permission checks, these examples assume that feature is disabled and demonstrate the basic functionality of the system.

Consider a Product model where a user may not be allowed to delete a product that is currently an actively-sold product line or if the product currently has any stock on hand. These restrictions can be imposed by an object-level access method, and a log can allow auditing why the permission was not granted:

from django.db import models

from .utils import get_quantity_in_stock

class Product(models.Model):

 code = models.CharField(max_length=20)
 name = models.CharField(max_length=100)
 active = models.BooleanField(default=True)

 def _user_can_delete_product(self, user):

 user.start_log('delete-product-{0}'.format(self.pk))

 if self.active:
 user.log('Cannot delete active product lines')
 allowed = False
 elif get_quantity_in_stock(self):
 user.log('Cannot delete products with stock on hand')
 allowed = False
 else:
 user.log('Product can be deleted')
 allowed = True

 user.end_log()

 return allowed

Nested logs

As mentioned, if a log is already active and a new log is created, the new log becomes active and the previous log will be reactivated when the new log is finished. This allows for logs to be nested without worrying about interfering with other logs.

Continuing the above Product example, deletion may also require that the user has permission to manage the inventory from the supplier in question. Thus, checking the “delete_product” permission can trigger a “manage_supplier” permission check. If both permissions perform logging, those logs are nested, but neither need to do anything special to handle it:

from django.conf import settings
from django.db import models

from .inventory import get_quantity_in_stock

class Supplier(models.Model):

 name = models.CharField(max_length=100)
 managers = models.ManyToManyField(settings.AUTH_USER_MODEL)

 def _user_can_manage_supplier(self, user):

 user.start_log('manage-supplier-{0}'.format(self.pk))

 if not self.managers.filter(pk=user.pk).exists():
 user.log('You do not have permission to manage the inventory of {0}'.format(self.name))
 allowed = False
 else:
 allowed = True

 user.end_log()

 return allowed

 class Meta:
 permissions = (
 ('manage_supplier', "Can manage inventory from this supplier")
)

class Product(models.Model):

 code = models.CharField(max_length=20)
 name = models.CharField(max_length=100)
 active = models.BooleanField(default=True)
 supplier = models.ForeignKey(Supplier, on_delete=models.PROTECT)

 def _user_can_delete_product(self, user):

 user.start_log('delete-product-{0}'.format(self.pk))

 if self.active:
 user.log('Cannot delete active product lines')
 allowed = False
 elif get_quantity_in_stock(self):
 user.log('Cannot delete products with stock on hand')
 allowed = False
 elif not user.has_perm('inventory.manage_supplier', self.supplier):
 user.log('You do not have permission to manage the inventory of {0}'.format(self.supplier.name))
 allowed = False
 else:
 user.log('Product can be deleted')
 allowed = True

 user.end_log()

 return allowed

Of course, sometimes it is useful to explicitly handle nested logs. Instead of duplicating the same log entry in both the “manage_supplier” and “delete_product” access methods, “delete_product” can simply incorporate the log generated by “manage_supplier” into its own, using get_last_log():

def _user_can_delete_product(self, user):

 ...
 elif not user.has_perm('inventory.manage_supplier', self.supplier):
 inner_log = user.get_last_log(raw=True)
 user.log(*inner_log)
 allowed = False
 ...

Duplicate names

Creating a new log with the same name as another unfinished log is not possible - it will raise a ValueError. Therefore, it is important to use sufficiently informative names. The above nested logging example uses two logs named after the permission they are checking and the object they are checking it on. If they were both to use the same generic name, e.g. 'perm-log', attempting to call one from within the other would fail.

However, it is perfectly valid to re-use a name after the log has been finished. Doing so will overwrite the previous log when the new one is finished. This allows the same process to be run multiple times within the lifetime of the Loggable instance, without causing issues. But it is important to note that only the latest version of the log will be kept.

Persistence

As noted above, logs are stored on the Loggable instance itself. This can influence the types of classes that it makes sense to incorporate Loggable into. It may not be useful to use the mixin on classes that generate short-lived or difficult-to-access instances.

A custom user model is a good choice to add Loggable to (or, even better, OLPMixin). In the typical scenario, a user instance is accessible on every incoming request, can easily (and is often required to) be passed around among various function/method calls, and persists for the entire request-response cycle.

If there is a need for a more persistent storage mechanism for these logs, there are a number of ways that can be achieved. One possible solution is to override a suitable method from Loggable. The following example uses a simple model to store logs made on a custom User model once they have been completed:

from django.contrib.auth.models import AbstractUser
from django.db import models

from djem.models import Loggable

class UserLog(models.Model):

 name = models.CharField(max_length=100)
 log = models.TextField()

class User(Loggable, AbstractUser):

 def end_log(self):

 name, log = super(User, self).end_log()

 UserLog.objects.create(
 name=name,
 log='\n'.join(log)
)

 return name, log

Thread safety

Despite being able to be safely nested, instance-based logging is not thread safe. Due to the way the “active” log is maintained, multiple threads sharing the same Loggable instance can easily contaminate each other’s logs. In addition, if they run the same process (that uses instance-based logging), they may error out due to being unable to have multiple unfinished logs with the same name.

Multiple threads using separate instances of Loggable will only be problematic if implementing some kind of persistent storage mechanism for the logs, depending on the nature of the chosen mechanism.

When using Loggable (or OLPMixin) on a custom user model, as part of a standard request-response cycle, thread safety is not a concern as each request uses a separate user instance.

Models

Djem provides a series of custom classes to support common model-related functionality, including models, model managers and model fields.

Auditable

The Auditable class is designed as a mixin for Django models, providing:

	Standard user and datetime fields: user_created, user_modified, date_created, date_modified.

	Support for ensuring these fields remain accurate as records are updated over time.

	Support for ownership checking.

	A custom manager/queryset to assist with maintaining accuracy and checking ownership.

Changed in version 0.7: The Auditable mixin was previously called CommonInfoMixin. The old name is still available for backwards compatibility, but is considered deprecated.

Warning

Using Auditable can break code that automatically calls methods such as the model’s save() method, or the queryset’s update() method. See Maintaining accuracy for a description of the caveats of Auditable, and workarounds.

Usage

To make use of Auditable, simply include it among your model’s parent classes. It should be listed ahead of models.Model:

from django.db import models
from djem.models import Auditable

class ExampleModel(Auditable, models.Model):

 name = models.CharField(max_length=64)

Default values

The date_created and date_modified fields will default to django.utils.timezone.now() at the moment the instance is initially saved.

The user_created and user_modified fields will require a User instance in order to populate their values. However, they do not need to be populated manually. Djem provides various mechanisms to both make it easy to populate these fields automatically, and to ensure they are populated any time a record is updated. See Maintaining accuracy.

If any of the fields are populated manually, those values will take precedence.

Maintaining accuracy

The fields provided by Auditable are designed to be automatically populated whenever necessary. And in the case of date_modified and user_modified, it is necessary to update them whenever a record is updated.

For the date fields, this is easy to accomplish. For the user fields, it requires something extra - knowledge of the user doing the creating/updating.

Various means exist to provide this:

Calling save() on the instance

The Auditable.save() method is overridden to require a User instance as the first argument. This allows the method to populate user_created when a new instance is being created, and keep user_modified up to date as changes are made.

>>> alice = User.objects.get(username='alice')
>>> bob = User.objects.get(username='bob')
>>> obj = ExampleModel(name='Awesome Example')
>>> obj.user_created
None
>>> obj.save(alice)
>>> obj.user_created.username
"alice"
>>> obj.user_modified.username
"alice"
>>> obj.save(bob)
>>> obj.user_created.username
"alice"
>>> obj.user_modified.username
"bob"

Note

These fields will be updated even if the save() method is passed a sequence of update_fields that does not include it (see Django documentation for update_fields [https://docs.djangoproject.com/en/stable/ref/models/instances/#specifying-which-fields-to-save]). They will simply be appended to the list.

Using the queryset

Like Auditable.save(), various methods on AuditableQuerySet are also overridden to require an additional argument providing a user model instance. Again, this allows the methods to set or update the user-based fields as necessary. These methods include create(), get_or_create(), update(), and update_or_create().

The following demonstrates the use of the create() and update() methods:

>>> alice = User.objects.get(username='alice')
>>> bob = User.objects.get(username='bob')
>>> obj = ExampleModel.objects.create(alice, name='Good Example')
>>> obj.user_created.username
'alice'
>>> obj.user_modified.username
'alice'
>>> ExampleModel.objects.filter(name='Good Example').update(bob, name='Great Example')
>>> obj.refresh_from_db()
>>> obj.user_created.username
'alice'
>>> obj.user_modified.username
'bob'

New in version 0.7: The create(), get_or_create(), and update_or_create() queryset methods.

Using forms

The ModelForm is core to any Django web application. For compatibility with Auditable (i.e. ensuring a user argument is passed to the Auditable.save() method), Djem provides AuditableForm and UserSavable.

AuditableForm is a simple wrapper around ModelForm, and is designed to be used as a replacement to it for forms based on Auditable models. It takes a User instance as a constructor argument, giving it a known user to pass to the model’s save() method when the form is saved.

forms.py
from djem.forms import AuditableForm

class ExampleForm(AuditableForm):

 class Meta:
 model = ExampleModel
 fields = ['name']

views.py
def create_example(request):
 #...
 form = ExampleForm(request.POST, user=request.user)
 if form.is_valid():
 form.save()
 #...

Alternatively, UserSavable is a mixin for ModelForm, and is designed to be used for forms that already accept and store a known user. Unlike AuditableForm, it does not modify the constructor, but does assume a self.user attribute is available to pass to the model’s save() method when the form is saved.

forms.py
from django import forms
from djem.forms import UserSavable

class ExampleForm(UserSavable, forms.ModelForm):

 def __init__(self, *args, user=None, **kwargs):

 self.user = user

 super().__init__(*args, **kwargs)

 class Meta:
 model = ExampleModel
 fields = ['name']

views.py
def create_example(request):
 #...
 form = ExampleForm(request.POST, user=request.user)
 if form.is_valid():
 form.save()
 #...

Changed in version 0.7: AuditableForm was previously called CommonInfoForm. The old name is still available for backwards compatibility, but is considered deprecated.

New in version 0.7: UserSavable

Caveats and workarounds

Obviously any code that calls a model’s save() method or various queryset methods (such as create() or update()) will need to be altered to pass a user argument for models that incorporate Auditable. This may not always be possible for third party code. AuditableForm/UserSavable solve this problem for one common occurrence, by providing wrappers around Django’s ModelForm.save() method, but there are plenty of others.

If it is not feasible to customise code that calls these methods, it is possible to disable the requirement of the user argument. This can be done by setting DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE to False in settings.py:

DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE = False

This allows the use of Auditable and all related functionality without the strict requirement of passing the user argument to methods that save/update the record. If passed, it will still be used as described above, but not providing it will not raise an exception. Of course, the methods won’t automatically populate the appropriate fields, either. This means that user_created and user_modified will need to be manually populated when creating, and user_modified will need to be manually populated when updating.

Changed in version 0.7: DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE was previously called DJEM_COMMON_INFO_REQUIRE_USER_ON_SAVE. The old setting is still available for backwards compatibility, but is considered deprecated.

Warning

Setting DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE to False reduces the accuracy of the user_modified field, as it cannot be guaranteed that the user that made a change was recorded.

Note

As the accuracy of the user_modified field is often irrelevant in tests, setting DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE to False using override_settings() [https://docs.djangoproject.com/en/stable/topics/testing/tools/#django.test.override_settings] can help make updating model instances in tests a bit easier.

E.g.

from django.test import TestCase, override_settings

For the whole TestCase:

@override_settings(DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE=False)
class ExampleTestCase(TestCase):
 # ...

For specific tests:

class ExampleTestCase(TestCase):

 @override_settings(DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE=False)
 def test_something(self):
 # ...

An additional caveat is that there may not always be a known user when a change is being made to a Auditable record, e.g. during a system-triggered background process. Situations such as these may be solved by setting DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE as described above, and taking responsibility for keeping user_modified up to date when necessary, or by creating a “system” user that can be passed in during these operations.

Ownership checking

Auditable also adds support for ownership checking. The owned_by() method can be called on an model instance to check if the instance is owned by the given user. The user can be provided either as a User instance or as the primary key of a User record.

>>> alice = User.objects.get(username='alice')
>>> bob = User.objects.get(username='bob')
>>> obj = ExampleModel(name='Awesome Example')
>>> obj.save(alice)
>>> obj.owned_by(alice)
True
>>> obj.owned_by(bob)
False

Ownership checking is also available via a Auditable model’s manager and queryset. The queryset’s owned_by() method also accepts a user as a User instance or as the primary key of a User record. It returns a queryset filtered to records where the user_created field matches the given user.

>>> ExampleModel.objects.owned_by(alice)
[<ExampleModel: Awesome Example>]
>>> ExampleModel.objects.owned_by(bob)
[]
>>> ExampleModel.objects.filter(name__contains='Great').owned_by(alice)
[]

Archivable

The Archivable class is designed as a mixin for Django models, providing:

	An is_archived Boolean field, defaulting to False.

	A custom manager/queryset with shortcuts for filtering on the is_archived field.

	Support for easily archiving and unarchiving an instance.

Changed in version 0.7: The Archivable mixin was previously called ArchivableMixin. The old name is still available for backwards compatibility, but is considered deprecated.

Usage

To make use of Archivable, simply include it among your model’s parent classes. It should be listed ahead of models.Model:

from django.db import models
from djem.models import Archivable

class ExampleModel(Archivable, models.Model):

 name = models.CharField(max_length=64)

Archiving and unarchiving

Instances of Archivable have the archive() and unarchive() methods. These set the is_archived flag of the instance to True or False, respectively, and save the instance. Any arguments provided to them are passed through to their internal calls to save().

>>> obj = ExampleModel(name='Awesome Example')
>>> obj.save()
>>> ExampleModel.objects.get(name='Awesome Example').is_archived
False
>>> obj.archive()
>>> ExampleModel.objects.get(name='Awesome Example').is_archived
True
>>> obj.unarchive()
>>> ExampleModel.objects.get(name='Awesome Example').is_archived
False

Changed in version 0.7: Previous versions of Djem also provided archive() and unarchive() methods on ArchivableQuerySet. These were removed due to the overhead they added to combining the functionality of ArchivableQuerySet and AuditableQuerySet, and because the naming was too similar after the introduction of the archived() and unarchived() methods. Using the update() method and passing is_archived is more explicit and safer.

Filtering shortcuts

Archivable uses the custom ArchivableQuerySet, which provides the archived() and unarchived() methods. These methods filter the queryset to records with is_archived=True or is_archived=False, respectively. They are accessible both at the manager and queryset level.

>>> ExampleModel(name='Example1', is_archived=True).save()
>>> ExampleModel(name='Example2', is_archived=False).save()
>>> ExampleModel.objects.count()
2
>>> ExampleModel.objects.unarchived().count()
1
>>> ExampleModel.objects.filter(name='Example1').unarchived().count()
0
>>> ExampleModel.objects.archived().count()
1
>>> ExampleModel.objects.filter(name='Example2').archived().count()
0

Changed in version 0.7: Previous versions of Djem used three different managers - objects, live and archived - to provide access to querysets with various preset filters on the is_archived field. This didn’t allow for applying the filters if a queryset was obtained by other means (e.g. via a ManyToManyField related manager) and made it more difficult to extend the manager (if the model inheriting from Archivable needed its own custom manager/queryset).

Versionable

The Versionable class is designed as a mixin for Django models, providing a version field that is automatically incremented on every save.

Changed in version 0.7: The Versionable mixin was previously called VersioningMixin. The old name is still available for backwards compatibility, but is considered deprecated.

Usage

To make use of Versionable, simply include it among your model’s parent classes. It should be listed ahead of models.Model:

from django.db import models
from djem.models import Versionable

class ExampleModel(Versionable, models.Model):

 name = models.CharField(max_length=64)

Incrementing version

Incrementation of the version field is done atomically, through the use of a Django F() expression, to avoid possible race conditions. See Django documentation for F() expressions [https://docs.djangoproject.com/en/stable/ref/models/expressions/#django.db.models.F].

To ensure the version field is always kept current, Versionable overrides the save() method and the update() method of its custom queryset. The update_or_create() method, while not overridden, will also increment the version appropriately.

Note

The version field will be updated even if the save() method is passed a sequence of update_fields that does not include it (see Django documentation for update_fields [https://docs.djangoproject.com/en/stable/ref/models/instances/#specifying-which-fields-to-save]). It will simply be appended to the list.

Warning

Once an instance is saved and the F() expression is used to increment the version, the version field will become a Django Expression instance. At this point, it is no longer accessible as an integer. For the same reason an F() expression is used to perform the incrementation (race conditions), the new version cannot be retrieved from the database after the save and used to replace the Expression value. There is the possibility the version retrieved will not be the one that matches the rest of the values on the model. The only way to regain a usable version field after saving a model instance is requerying for the whole instance.
Attempting to access the version field after it has been incremented will raise a Versionable.AmbiguousVersionError exception.

Note

Even though directly accessing the version field is not possible after it has been atomically incremented, subsequent saves of the same instance will continue to correctly increment it.

Mixing Mixins

A model can include any combination of the above mixins. However, since they all use custom managers/querysets to provide additional functionality unique to them, a model using multiple mixins will also need to specify its own manager/queryset that incorporates the functionality of each. The custom querysets have been designed to make this as simple as possible, without any additional customisation necessary. Each mixin supports a custom as_manager() method that makes it even easier, as demonstrated below. This functionality is provided by the MixableQuerySet mixin, which is also available for use in your own custom queryset classes.

For a ready-made combination of all three mixins (Auditable, Archivable and Versionable), see StaticAbstract.

The following is an example of a model using both the Auditable and Archivable mixins:

from django.db import models
from djem.models import Archivable, Auditable
from djem.managers import ArchivableQuerySet, AuditableQuerySet

class ExampleModel(Auditable, Archivable, models.Model):

 name = models.CharField(max_length=64)

 objects = AuditableQuerySet.as_manager(ArchivableQuerySet)

New in version 0.7: MixableQuerySet and its custom as_manager() method. Previously, mixin querysets had to be combined manually.

StaticAbstract

StaticAbstract is a combination of Auditable, Archivable and Versionable. It is designed as an abstract base class for models, rather than a mixin itself. It includes all the fields and functionality offered by each of the mixins, including:

	Maintaining the accuracy of date_modified and user_modified as changes are made.

	Automatically and atomically incrementing version as changes are made.

	Allowing archiving and unarchiving.

	Providing ownership checking.

Usage

To make use of StaticAbstract, simply inherit from it:

from django.db import models
from djem.models import StaticAbstract

class ExampleModel(StaticAbstract):

 name = models.CharField(max_length=64)

TimeZoneField

TimeZoneField is a model field that stores timezone name strings (‘Australia/Sydney’, ‘US/Eastern’, etc) in the database and provides access to TimeZoneHelper instances for the stored timezones, as explained below.

In forms, a TimeZoneField is represented by a TypedChoiceField, and rendered using a Select widget by default.

Note

Use of TimeZoneField requires pytz [http://pytz.sourceforge.net/] to be installed. It will raise an exception during instantiation if pytz is not available.

Note

Use of TimeZoneField only makes sense if USE_TZ [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_TZ] is True.

Usage

TimeZoneField is used just like any model field. The following demonstrates adding a time_zone field to a custom User model.

from django.contrib.auth.models import AbstractBaseUser
from djem.models import TimeZoneField

class User(AbstractBaseUser):
 ...
 time_zone = TimeZoneField()

Accessing the time_zone field on a User instance yields a TimeZoneHelper instance, which provides some helpers for dealing with times in local timezones, as explained below.

>>> user = User.objects.get(timezone='Australia/Sydney')
>>> user.timezone
<TimeZoneHelper: Australia/Sydney>

Available Timezones

TimeZoneField is a reasonably light wrapper around a CharField, providing a default value for the choices argument. The default choices are taken from pytz.common_timezones [http://pytz.sourceforge.net/#helpers].

These choices can be modified in the same way as any other CharField. However, they need to be valid timezone name strings as per the Olson tz database, used by pytz [http://pytz.sourceforge.net/#introduction].

For example, using a very limited set of timezones:

from django.contrib.auth.models import AbstractBaseUser
from djem.models import TimeZoneField

class User(AbstractBaseUser):
 ...
 time_zone = TimeZoneField(choices=(
 ('Australia/Brisbane'),
 ('Australia/Sydney'),
 ('Australia/Melbourne')
))

TimeZoneHelper

TimeZoneHelper is a simple helper class that provides shortcuts for getting the current date and the current datetime for a known local timezone.

Assuming a User model with a time_zone field, as shown above:

>>> aus_user = User.objects.get(timezone='Australia/Sydney')
>>> aus_user.timezone.name
'Australia/Sydney'
>>> aus_user.timezone.now()
datetime.datetime(2016, 6, 21, 9, 47, 4, 29965, tzinfo=<DstTzInfo 'Australia/Sydney' AEST+10:00:00 STD>)
>>> aus_user.timezone.today()
datetime.date(2016, 6, 21)

>>> us_user = User.objects.get(timezone='US/Eastern')
>>> us_user.timezone.name
'US/Eastern'
>>> us_user.timezone.now()
datetime.datetime(2016, 6, 20, 19, 47, 4, 32814, tzinfo=<DstTzInfo 'US/Eastern' EDT-1 day, 20:00:00 DST>)
>>> us_user.timezone.today()
datetime.date(2016, 6, 20)

Warning

Be careful when dealing with local times. Django recommends you “use UTC in the code and use local time only when interacting with end users”, with the conversion from UTC to local time usually only being performed in templates. And the pytz documentation notes “The preferred way of dealing with times is to always work in UTC, converting to localtime only when generating output to be read by humans”. See the Django timezone documentation [https://docs.djangoproject.com/en/stable/topics/i18n/timezones/] and the pytz documentation [http://pytz.sourceforge.net/].

Rendering Forms

New in version 0.6.

Djem provides some simple template tags to assist in rendering form fields in templates.

While Django provides numerous ways to customise the way it renders form fields, they are often inadequate. The options for rendering all of a form’s fields [https://docs.djangoproject.com/en/stable/topics/forms/#form-rendering-options] as a series of <tr>, , or <p> tags, are limited to providing fairly basic field/label pairs, with little opportunity for customisation. And rendering fields manually [https://docs.djangoproject.com/en/stable/topics/forms/#rendering-fields-manually] often results in repeating boilerplate code, e.g. specifying a wrapping element, the field, its label, its error list, etc.

The form_field and checkbox template tags use a fully customisable template to render each individual field. The template, found at djem/form_field.html, can be altered per-project using Django’s standard template overriding mechanism [https://docs.djangoproject.com/en/stable/howto/overriding-templates/]. By default, it provides:

	A wrapping element with the following features:

	By default, the element is a <div>, but this can be modified using the DJEM_FORM_FIELD_TAG setting.

	The element is given the following CSS classes:

	form-field

	Any classes defined by the form. See below examples.

	Any classes passed to the template tag. See below examples.

	The element is given additional HTML attributes based on keyword arguments passed to the template tag. See below examples.

	The field’s label (for fields rendered with form_field, see below examples).

	The field’s error list (when applicable). The error list is the Django default <ul class="errorlist">.

	The field itself.

	The specified checkbox label (for fields rendered with checkbox, see below examples). This <label> element will have the check-label CSS class.

	A <div> with the CSS class form-field__help containing the field’s help text, if any.

The following usage examples are based off a basic user registration form:

from django import forms

class RegistrationForm(forms.Form):
 first_name = forms.CharField(label='Your first name')
 last_name = forms.CharField(label='Your last name')
 email = forms.EmailField(label='Your email address', help_text="Don't worry, we won't share your email address with anyone.")
 terms = forms.BooleanField(label='Terms of Service')

In the below template snippets, an instance of this form is contained in a context variable called registration_form.

form_field

The form_field tag has a single required argument: the form field to be rendered.

{% load djem %}
...
{% form_field registration_form.first_name %}
{% form_field registration_form.last_name %}
{% form_field registration_form.email %}
{% form_field registration_form.terms %}
...

Rendering this template would result in the following HTML:

<div class="form-field">
 <label for="id_first_name">Your first name:</label>
 <input type="text" name="first_name" id="id_first_name" />
</div>
<div class="form-field">
 <label for="id_last_name">Your last name:</label>
 <input type="text" name="last_name" id="id_last_name" />
</div>
<div class="form-field">
 <label for="id_email">Your email address:</label>
 <input type="email" name="email" id="id_email" />
 <div class="form-field__help">Don't worry, we won't share your email address with anyone.</div>
</div>
<div class="form-field">
 <label for="id_terms">Terms of Service:</label>
 <input type="checkbox" name="terms" id="id_terms" />
</div>

This doesn’t look too different from what {{ registration_form.as_p }} would generate, but note:

	The <div> wrapper around each field can be customised without even overriding the template, using the DJEM_FORM_FIELD_TAG setting.

	The form-field class provides an easy CSS styling target.

	Help text is rendered automatically when defined, with its own easily targetted field-field__help class for styling.

	The entire block rendered for each field can be completely customised by overriding the djem/form_field.html template, allowing for custom and consistent rendering of form fields across your project.

The form_field tag has more advanced uses, too. But first, the “terms” checkbox rendered above could be nicer, and that’s what the checkbox tag is for.

checkbox

The checkbox tag uses the same djem/form_field.html template as form_field, but it renders labels differently:

	it includes the <label> element after the field itself, not before

	it gives the <label> element the check-label CSS class, allowing it to be styled independently of regular labels

Also, unlike form_field, checkbox is a block tag. It uses the content between its start and end tags as the label for the field. This has one important benefit: we can include HTML in the label text. Updating the previous example to use the checkbox tag for the “terms” field:

{% load djem %}
...
{% checkbox registration_form.terms %}
 I agree to the Terms of Service.
{% endcheckbox %}
...

The rendered HTML for this field then becomes:

<div class="form-field">
 <input type="checkbox" name="terms" id="id_terms" />
 <label class="check-label" for="id_terms">I agree to the Terms of Service.</label>
</div>

That’s a bit more user-friendly.

If no content is entered between the start and end tags, the field’s default label text is used. In this case, the <label> element will still be included after the field itself, instead of before, and will still receive the check-label class.

Note

Don’t go too crazy with HTML in your label text. It is still rendered inside a <label> element, so should only contain markup that is valid within <label>.

Note

checkbox is not strictly limited to actual checkbox inputs. You could, if for some reason it was appropriate, use it for any form field.

Extra CSS classes

Both form_field and checkbox can add additional field-specific CSS classes to the wrapping element. These classes can come from two places: the Form class definition, or passing them into the template tag itself.

A Form class can specify additional CSS classes per field in several ways. The error_css_class and required_css_class attributes can be used [https://docs.djangoproject.com/en/stable/ref/forms/api/#styling-required-or-erroneous-form-rows] to automatically apply additional classes to fields that are required or contain errors, respectively. Also, custom classes can be applied to specific fields [https://docs.djangoproject.com/en/stable/ref/forms/api/#django.forms.BoundField.css_classes] using their css_classes() method.

Adapting the registration form example to add a CSS class to highlight required fields is simple:

from django import forms

class RegistrationForm(forms.Form):

 required_css_class = 'form-field--required'

 first_name = forms.CharField(label='Your first name')
 last_name = forms.CharField(label='Your last name')
 email = forms.EmailField(label='Your email address', help_text="Don't worry, we won't share your email address with anyone.")
 terms = forms.BooleanField(label='Terms of Service')

Without changing the template, this generates the following HTML:

<div class="form-field form-field--required">
 <label for="id_first_name">Your first name:</label>
 <input type="text" name="first_name" id="id_first_name" />
</div>
<div class="form-field form-field--required">
 <label for="id_last_name">Your last name:</label>
 <input type="text" name="last_name" id="id_last_name" />
</div>
<div class="form-field form-field--required">
 <label for="id_email">Your email address:</label>
 <input type="email" name="email" id="id_email" />
 <div class="form-field__help">Don't worry, we won't share your email address with anyone.</div>
</div>
<div class="form-field form-field--required">
 <label for="id_terms">Terms of Service:</label>
 <input type="checkbox" name="terms" id="id_terms" />
</div>

The other way to apply custom CSS classes to a field is to pass them directly into the template tag. For example, in order to display the first_name and last_name fields side-by-side, simply pass in a CSS class that can style them accordingly:

{% load djem %}
...
{% form_field registration_form.first_name 'one-half' %}
{% form_field registration_form.last_name 'one-half' %}
{% form_field registration_form.email %}
{% form_field registration_form.terms %}
...

<div class="form-field form-field--required one-half">
 <label for="id_first_name">Your first name:</label>
 <input type="text" name="first_name" id="id_first_name" />
</div>
<div class="form-field form-field--required one-half">
 <label for="id_last_name">Your last name:</label>
 <input type="text" name="last_name" id="id_last_name" />
</div>
<div class="form-field form-field--required">
 <label for="id_email">Your email address:</label>
 <input type="email" name="email" id="id_email" />
 <div class="form-field__help">Don't worry, we won't share your email address with anyone.</div>
</div>
<div class="form-field form-field--required">
 <label for="id_terms">Terms of Service:</label>
 <input type="checkbox" name="terms" id="id_terms" />
</div>

Extra HTML attributes

form_field and checkbox also support adding custom HTML attributes to the wrapping element. The attribute name and value can be provided to the template tag as keyword arguments. Since attribute names can contain dashes, which are invalid in Python keyword argument names, any underscores in the argument name will be converted into dashes to form the HTML attribute name.

This feature is probably most useful for attaching data-* attributes. For example, if interacting with a particular field should trigger an AJAX lookup of some description, the URL to use for that request could be stored in a data-url attribute:

{% load djem %}
...
{% url 'verify-email' as verify_email_url %}
{% form_field registration_form.email data_url=verify_email_url %}
...

<div class="form-field form-field--required" data-url="/accounts/email/verify/">
 <label for="id_email">Your email address:</label>
 <input type="email" name="email" id="id_email" />
 <div class="form-field__help">Don't worry, we won't share your email address with anyone.</div>
</div>

Something like the above could be used, for example, to keep hardcoded values (such as URLs) out of external JavaScript files.

Rendering in bulk

If you don’t need per-field customisation, such as additional CSS classes, extra HTML attributes, or custom checkbox labels, you can use form_field in a loop:

{% load djem %}
...
{% for field in form.hidden_fields %}
 {{ field }}
{% endfor %}

{% for field in form.visible_fields %}
 {% form_field field %}
{% endfor %}
...

Note

Note that, while form_field will work for hidden fields, it is largely useless. Most of the features it provides are unnecessary for hidden fields.

Pagination

Djem provides some simple helpers to remove common boilerplate in fetching and rendering pages of results among some list of items.

In the view

Django’s Page object provides a number of helpful methods and attributes that aid in rendering a paged result list, in addition to providing a slice of the result list itself. However, obtaining a Page instance can involve a bit of boilerplate, particularly in validating the page number and handling various possible invalid states. Moreover, it needs to be repeated in every view that uses pagination.

Djem’s get_page() removes this boilerplate. It is a basic wrapper around a Django Paginator object that primarily provides some sanity checking of the given page number.

Internally, it constructs a Paginator instance and uses its page() method to retrieve a Page.

See the Django pagination documentation [https://docs.djangoproject.com/en/stable/topics/pagination/] for details on the Paginator and Page objects provided by Django.

New in version 0.5.

Usage

get_page() has three required arguments:

	number

	The page number to retrieve, as a 1-based index. The given value is validated in the following ways:

	If it is not an integer, Paginator raises a PageNotAnInteger exception. get_page() catches this and returns the first page of results instead.

	If it is less than 1, Paginator raises an EmptyPage exception. get_page() catches this and returns the first page of results instead.

	If it is over the maximum number of pages for the given item sequence, Paginator also raises an EmptyPage exception. get_page() catches this and returns the last page of results instead.

	object_list

	The sequence of items from which to retrieve the specified page. As per the Paginator object itself, the sequence can be a list, tuple, Django QuerySet, or any other sliceable object with a count() or __len__() method.

	per_page

	The number of results to be included in each page. While required by default, a project-wide default value can be set that removes the need to specify per_page on every call. See Controlling page length below.

While get_page() only returns a Page instance, the Paginator that created it is accessible through the Page.paginator attribute. Adapting Django’s example [https://docs.djangoproject.com/en/stable/topics/pagination/#example]:

>>> from djem.pagination import get_page
>>> objects = ['john', 'paul', 'george', 'ringo']
>>> page1 = get_page(1, objects, per_page=2)

>>> page1.paginator.count
4
>>> page1.paginator.num_pages
2
>>> page1.paginator.page_range
range(1, 3)

>>> page1
<Page 1 of 2>
>>> page1.object_list
['john', 'paul']
>>> page1.has_next()
True
>>> page1.has_previous()
False

>>> get_page('spam', objects, per_page=2)
<Page 1 of 2>

>>> get_page(-1, objects, per_page=2)
<Page 1 of 2>

>>> get_page(9999, objects, per_page=2)
<Page 2 of 2>

get_page() also accepts all remaining keyword arguments of the Paginator constructor, which are passed through to the Paginator instance created internally. For example, using the orphans argument with the above example:

>>> get_page(1, objects, per_page=3)
<Page 1 of 2>

>>> get_page(1, objects, per_page=3, orphans=1)
<Page 1 of 1>

get_page() can still raise an EmptyPage exception if allow_empty_first_page=False is given and the object_list is empty:

>>> from djem.pagination import get_page
>>> objects = []
>>> page1 = get_page(1, objects, per_page=20, allow_empty_first_page=False)
Traceback (most recent call last):
...
EmptyPage: That page contains no results

Note

get_page() differs from the Paginator.get_page() method introduced in Django 2.0 [https://docs.djangoproject.com/en/2.0/topics/pagination/#django.core.paginator.Paginator.get_page] in two ways:

	The default page length support described below.

	The behaviour of an out-of-range page number: For numbers less than 1, Paginator.get_page() returns the last page while get_page() returns the first page.

Controlling page length

In a lot of cases, sites use a standard page length for multiple (sometimes numerous) paginated lists they display. Djem reduces the need to specify this value in repeated calls to get_page() by providing a setting that defines this standard page length: DJEM_DEFAULT_PAGE_LENGTH.

If added to your settings.py file, get_page() will use the defined page length in any call that does not explicitly pass the per_page argument. Providing the argument will override the default on a call-by-call basis.

Not providing the per_page argument when DJEM_DEFAULT_PAGE_LENGTH is not defined in settings.py will result in an exception.

In the template

Rendering a block of links to control pagination of a result list (first, last, next, previous, etc) can also involve boilerplate code and repetition. The paginate template tag allows one-line generation of such pagination links. Simply pass it the same Django Page instance used to render the list itself and it will render appropriate page navigation links. This allows quick and easy rendering of a consistent paged-list navigation block site wide.

New in version 0.6.

For example, where user_list is a Page instance:

{% load djem %}
...
{% for user in user_list %}
 {{ user.name }}
{% endfor %}
{% paginate user_list %}
...

The structure of the navigation block that is rendered is controlled by the djem/pagination.html template. Djem ships with a default template, but (as per any template provided by a Django app) this can be overridden by a specific project. See the Django documentation for overriding templates [https://docs.djangoproject.com/en/stable/howto/overriding-templates/].

By default, the block will be rendered as a HTML ordered list () with the following items:

	A link to the first page, labelled “First” (hidden if displaying the first page)

	A link to the previous page, labelled “Previous” (hidden if displaying the first page)

	“Page X of Y”, where X is the current page number and Y is the total number of pages

	A link to the next page, labelled “Next” (hidden if displaying the last page)

	A link to the last page, labelled “Last” (hidden if displaying the last page)

The links are defined simply as “?page=n”, where n is the relevant page number.

To alter the labels, change the format of the links (e.g. the name of the GET param), or completely change which links are displayed (e.g. adding links to individual page numbers), the djem/pagination.html will need to be overridden. However, this is not necessary to simply style the default navigation block. The following CSS classes are available by default:

	The element has the pagination class

	The element containing the first page link has the pagination__first class

	The element containing the previous page link has the pagination__previous class

	The element containing the next page link has the pagination__next class

	The element containing the last page link has the pagination__last class

The following CSS renders the and its items horizontally, removes their indentation and bullets, and adds double-angle quotation marks as glyphs to the “first” and “last” links (« and »):

.pagination {
 list-style: none;
 margin-left: 0;
 text-align: center;
}

.pagination > li {
 display: inline-block;
 margin-left: 0;
}

.pagination__first > a:before{
 content:"\00AB" "\00A0";
}

.pagination__last > a:after{
 content:"\00A0" "\00BB";
}

AJAX

Checking authentication

Django’s built in login_required() decorator is not well suited to AJAX requests. If the user making the request is not authenticated, it issues a redirect to the configured login view. This is not particularly useful to an AJAX client.

Djem provides a simple alternate decorator, ajax_login_required(), to use on views that are the target of AJAX requests. Instead of issuing a redirect if the user is not authenticated, it returns a HttpForbiddenResponse.

New in version 0.7: The ajax_login_required() decorator.

Responding to AJAX requests

Django provides JsonResponse to aid in responding to data-centric AJAX requests (as opposed to those that return rendered HTML to be injected directly into the page). Djem provides a simple extension of JsonResponse that adds some additional features: AjaxResponse.

AjaxResponse automatically adds any messages in the Django messages framework [https://docs.djangoproject.com/en/stable/ref/contrib/messages/] store to the response body.

This allows views that are called via AJAX and return JSON-encoded data to still make use of the messages framework and have those messages automatically embedded in the response and removed from the message store.

The messages are added to the parent JsonResponse’s data dictionary using the “messages” key. The messages themselves are dictionaries containing the following:

	message: The message string.

	tags: A string of the tags applied to the message, space separated.

If there are no messages to add, the “messages” key will not be added to the data dictionary at all (i.e. it will not be added as an empty list).

Using AjaxResponse differs from JsonResponse in the following ways:

	The first positional argument should be a Django HttpRequest instance. This argument is required - it is used to retrieve messages from the message framework store.

	The data argument is optional. If provided, it must always be a dict instance, and messages will be added to this dictionary. If not provided, messages will be added to a new dict instance, passing it to the parent JsonResponse. Using the safe argument of JsonResponse to JSON-encode other types is not supported (see the documentation [https://docs.djangoproject.com/en/stable/ref/request-response/#serializing-non-dictionary-objects] for the safe argument of JsonResponse).

	The optional argument success can be set to add a “success” attribute to the data dictionary. The “success” attribute will always be added as a boolean value, regardless of what was passed to the success argument (though it will not be added at all if nothing was passed). As with messages, this will be added to the data dictionary passed to the parent JsonResponse regardless of whether one was provided to AjaxResponse itself or not.

With the exception of safe, as noted above, AjaxResponse accepts and supports all arguments of JsonResponse.

Usage

This simple example demonstrates how AjaxResponse can be used with the messages framework:

from django.contrib import messages
from djem import AjaxResponse

def my_view(request):

 # do something...

 messages.success(request, 'Did something!')

 return AjaxResponse(request)

This will give a JSON-encoded response body that looks like this:

{
 "messages":[{
 "message":"Did something!",
 "tags":"success"
 }]
}

The following is a more complete example, based on the “polls” application created in the Django tutorial [https://docs.djangoproject.com/en/stable/intro/tutorial01/]. This view records a vote on a given Choice:

from django.contrib import messages
from djem import AjaxResponse

from polls.models import Choice

def vote_on_question(request, choice_id):

 try:
 choice = Choice.objects.get(pk=choice_id)
 except Choice.DoesNotExist:
 messages.error(request, 'Invalid choice.')
 return AjaxResponse(request, success=False)

 choice.votes += 1
 choice.save()

 messages.success(request, 'Vote recorded.')

 return AjaxResponse(request, {'votes': choice.votes}, success=True)

Note

This example is for illustrative purposes only. It does not represent a good way to increment a counter in the database - such an operation should be performed atomically [https://docs.djangoproject.com/en/stable/ref/models/expressions/#f-expressions].

CSRF

As Django notes in its own documentation [https://docs.djangoproject.com/en/stable/ref/csrf/#ajax], adding the CSRF token to AJAX POST requests can be done on each individual request, or you can use JavaScript framework features to add it to all outgoing POST requests, using the X-CSRFToken header.

Djem’s csrfify_ajax template tag does exactly that in a single line:

{% load djem %}
...
{% csrfify_ajax %}
...

The tag injects a <script> tag containing library-specific code to add X-CSRFToken headers to all outgoing requests that require it.

New in version 0.6: The csrfify_ajax template tag.

Note

As with Django’s standard {% csrf_token %} tag, to use {% csrfify_ajax %} the view must use RequestContext to render the template, e.g. using the render() shortcut function.

Note

As the <script> tag rendered by the tag contains library-specific code, it needs to be included after the library itself.

Library support

By default, Djem ships with support for jQuery, but it is simple to add additional libraries. Extra libraries may be included by default in future releases.

The <script> tag, and its contents, that csrfify_ajax renders is stored in a template under the djem/csrfify_ajax/ directory, named after the library. E.g. the included jQuery template is at djem/csrfify_ajax/jquery.html. As with any Django app templates, you can override those that Djem includes or add your own by including your own djem/csrfify_ajax/ directory somewhere on your configured template path. See the Django documentation for overriding templates [https://docs.djangoproject.com/en/stable/howto/overriding-templates/].

By providing your own template, you can use csrfify_ajax with any library of your choosing. To specify which library template the tag should use, simply provide the name of the template (without the .html) as an argument:

{% load djem %}
...
{% csrfify_ajax 'some_other_lib' %}
...

A default value of 'jquery' is used when no argument is provided.

These templates have access to the CSRF token via the {{ csrf_token }} template variable.

XSS

Django’s template system automatically escapes all template variables by default [https://docs.djangoproject.com/en/stable/ref/templates/language/#automatic-html-escaping]. This helps prevent user-generated content from messing up the rendered HTML, or worse, exposing your users to a security vulnerability. This kind of injection is known as cross site scripting [https://docs.djangoproject.com/en/stable/topics/security/#cross-site-scripting-xss-protection] or XSS.

If including user-generated content in the JSON body of an AJAX response (that is, not returning rendered HTML), these autoescaping protections do not apply. If that content is then injected directly into the page when the response is received, similar XSS vulnerabilities exist.

You should be wary of XSS threats when returning data in this way. Either ensure all returned data has been properly escaped on the server side, or do not inject it as HTML (e.g. use jQuery’s .text() method instead of .html() [http://api.jquery.com/text/])

Djem’s AjaxResponse class helps mitigate one potential vector for XSS - messages added via the Django messages framework. All messages included in the response body are escaped, unless marked as safe [https://docs.djangoproject.com/en/stable/ref/utils/#module-django.utils.safestring].

View
from django.contrib import messages
from django.template.defaultfilters import mark_safe
from djem.ajax import AjaxResponse

def view(request):

 some_user_input = 'BAD user input'

 messages.error(request, 'Invalid input: {0}.'.format(some_user_input))
 messages.info(request, mark_safe('This is a message with safe HTML.'))

 return AjaxResponse(request)

Response Body
{
 "messages": [{
 "message": "Invalid input: BAD user input.",
 "tags": "error"
 }, {
 "message": "This is a message with safe HTML.",
 "tags": "info"
 }]
}

The messages framework

As noted above, the AjaxResponse class can automatically include messages stored in Django’s builtin messages framework [https://docs.djangoproject.com/en/stable/ref/contrib/messages/]. But whether or not you are using AjaxResponse, the messages framework is not perfectly suited for use in AJAX requests.

It is designed to make it simple to store one-time notification messages throughout the lifecycle of a request, then display them together at some later point, typically when rendering a template. Importantly, it offers persistent storage of these messages, allowing them to be retrieved and displayed on a later request. This is particularly useful when issuing browser redirects to display subsequent pages, and needing the messages from the current request to be available after the redirect.

As Django notes in its documentation [https://docs.djangoproject.com/en/stable/ref/contrib/messages/#behavior-of-parallel-requests], this persistence between requests can cause issues if multiple requests are issued in parallel. The wrong request can read from the persistent messages store, display the messages in the wrong context, and prevent the messages being shown where they were intended. When dealing with full requests for entire pages, this situation only occurs when a user is issuing requests from multiple browser tabs/windows at the same time, and thus is only a minor problem. But on a site using AJAX requests, the risk increases. Depending on the nature of the site and the AJAX requests it issues, the chances of multiple requests running simultaneously can increase dramatically, making the problem of requests stealing messages from one another much worse.

One solution is to avoid using the messages framework in views used by AJAX requests. After all, an AJAX request doesn’t require the same redirect hopping that might otherwise be required - any messages that it generates can be returned immediately, making the persistent storage offered by the framework unnecessary. But some views can be used by both AJAX and non-AJAX requests, plus a consistent method of handling message passing regardless of the view would be nice.

Djem provides a MessageMiddleware class that acts as a drop-in replacement for Django’s own. Simply replace the django.contrib.messages.middleware.MessageMiddleware string in your MIDDLEWARE setting with djem.middleware.MessageMiddleware.

before
MIDDLEWARE = [
 ...
 'django.contrib.messages.middleware.MessageMiddleware'
 ...
]

after
MIDDLEWARE = [
 ...
 'djem.middleware.MessageMiddleware'
 ...
]

Djem’s MessageMiddleware is nearly identical to Django’s, and usage of the messages framework itself is completely unchanged. The middleware has only one minor difference: it disables persistent message storage for AJAX requests. On standard requests, the storage backend configured via the MESSAGE_STORAGE setting is still used as per usual. But on AJAX requests, a separate storage backend is used - one that keeps the messages in memory only, making them inaccessible to simultaneous requests.

New in version 0.6: MessageMiddleware

Important

MessageMiddleware uses the HttpRequest object’s is_ajax() method to differentiate between AJAX and non-AJAX requests. Your XMLHttpRequest call must use the appropriate headers [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.is_ajax] in order to be correctly detected. Most modern JavaScript libraries do so.

Note

Using a memory-only storage backend for messages in AJAX requests also makes them unavailable to subsequent requests. If using Djem’s MessageMiddleware, be sure to read the messages from the storage as part of the same request and include them in the response. AjaxResponse does this automatically.

Note

Using Djem’s MessageMiddleware doesn’t change any of the other requirements for using the messages framework. For instance, django.contrib.messages still needs to be listed in the INSTALLED_APPS setting and, if using SessionStorage, SessionMiddleware still needs to be listed before MessageMiddleware in the MIDDLEWARE setting.

Testing

Djem includes some utilities that make writing certain types of tests easier. They are used internally within Djem’s own test suite, but may well be useful elsewhere.

Test-only models

New in version 0.7.

It is often the case that tests are required for code that deals with models generically, and concrete example models to use in those tests may not exist. Django does not (yet) explicitly support defining models purely for testing. That is, models that do not get picked up by manage.py makemigrations or otherwise affect the live database, but only exist in the isolated test environment. But, thanks to the discussion on Django ticket #7835 [https://code.djangoproject.com/ticket/7835], the community has developed several workarounds.

Djem includes an adaption of one of the cleanest solutions (at time of writing, at least), provided by Simon Charette [https://code.djangoproject.com/ticket/7835#comment:46]: setup_test_app(). It requires the use of a tests package, rather than just a test.py module, but otherwise all that is necessary is a simple function call.

Assuming a Django app with the name myapp, simply place the following in myapp.tests.__init__:

from djem.utils.tests import setup_test_app

setup_test_app(__package__)

This will configure Django with an extra app, named myapp_tests, and any models defined in myapp.tests.models will get picked up by the test database creation routine and added to the test database as part of this temporary app. These models can then be freely used in the test suite just like a regular model, but will not affect the live database.

If the default app label (created by appending _tests to the containing app’s own app label) is not suitable, it can be provided explicitly:

from djem.utils.tests import setup_test_app

setup_test_app(__package__, 'mytests')

Warning

If the tests package, myapp.tests in the above examples, is imported by anything that forms part of the standard Django runtime environment (such as within a models.py module, or anything imported by a models.py module), the test-only models will not remain isolated to the test suite. It should not be necessary to import anything from within the test suite anywhere else in the project.

Enhanced request factory

New in version 0.6.

The MessagingRequestFactory is an extension of Django’s RequestFactory helper for tests [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#the-request-factory]. It enables the use of the messages framework within the generated request.

This is typically not possible with RequestFactory, since it does not execute middleware. While the test client [https://docs.djangoproject.com/en/stable/topics/testing/tools/#the-test-client] offers full middleware support, there are numerous situations in which RequestFactory is a preferable method of generating test requests.

MessagingRequestFactory does not add full middleware support, but does prepare the generated requests such that the messages framework can be used. It does not use the standard message storage backend (as per the MESSAGE_STORAGE setting), but rather a memory-only backend that does not involve the use of sessions, cookies or any other means of persistent storage of the messages.

This means that messages need to be read in the same request they were added, or they will be lost. A subsequent request will not be able to access them as they typically would, e.g. after a redirect. Despite this limitation, it is sufficient in many testing scenarios - whether or not a message was added as part of a request can be tested, even if that message is inaccessible to a later request:

from django.contrib.auth.models import User
from django.contrib import messages
from django.test import TestCase

from djem.utils.tests import MessagingRequestFactory

Views expected to set messages
from .views import MyView, my_view

class SimpleTest(TestCase):

 def setUp(self):

 self.factory = MessagingRequestFactory()
 self.user = User.objects.create_user(
 username='test.user', email='test@…', password='top_secret'
)

 def test_details(self):

 request = self.factory.get('/customer/details')

 # Recall that middleware are not supported. You can simulate a
 # logged-in user by setting request.user manually.
 request.user = self.user

 # Test my_view() as if it were deployed at /customer/details
 response = my_view(request)

 # Use this syntax for class-based views
 response = MyView.as_view()(request)

 self.assertEqual(response.status_code, 200)

 # Test the expected message was set
 message_list = list(messages.get_messages(request))
 self.assertEqual(len(message_list), 1)
 self.assertEqual(message_list[0].message, 'An error occurred.')

Rendering string-based templates

New in version 0.6.

TemplateRendererMixin is a mixin for TestCase classes whose tests render templates from strings (as opposed to rendering them from files), using the Django template engine. This can be helpful, for example, when testing templatetags. Short template snippets can be rendered to test the tag under a variety of scenarios without requiring separate template files for each.

The mixin adds a render_template() method to the TestCase. This method takes the template to be rendered, as a string, and a template context dictionary as arguments. It returns the rendered template.

from django.test import TestCase

from djem.utils.tests import TemplateRendererMixin

class SomeTestCase(TemplateRendererMixin, TestCase):

 def test_something(self):

 template_string = (
 '{% if something %}'
 ' <p>'
 ' RENDER THIS'
 ' </p>'
 ' <p>'
 ' AND THIS'
 ' </p>'
 '{% endif %}'
)

 output = self.render_template(template_string, {
 'something': True
 })

 self.assertEqual(output, '<p> RENDER THIS </p><p> AND THIS </p>')

The output is stripped of all leading and trailing whitespace. Optionally, remaining whitespace will be “flattened” if the flatten argument is True, which is the default. Flattening removes all whitespace from between HTML tags and compresses all other whitespace down to a single space.

Flattening makes comparing rendered template output easier. This is demonstrated in the above example. The following example shows the difference when flatten is given as False:

def test_something(self):

 template_string = (
 '{% if something %}'
 ' <p>'
 ' RENDER THIS'
 ' </p>'
 ' <p>'
 ' AND THIS'
 ' </p>'
 '{% endif %}'
)

 output = self.render_template(template_string, {
 'something': True
 }, flatten=False)

 self.assertEqual(output, '<p> RENDER THIS </p> <p> AND THIS </p>')

render_template() can optionally accept a request argument, which should be a HttpRequest instance if given. This enables it to be used to test templates that require being rendered with a RequestContext. For example, it could be combined with the Django request factory [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#the-request-factory]:

from django.http import HttpResponse
from django.test import RequestFactory, TestCase

from djem.utils.tests import TemplateRendererMixin

class SomeTestCase(TemplateRendererMixin, TestCase):

 def test_something(self):

 def view(r):

 template_string = '...'

 output = self.render_template(template_string, {}, r)

 return HttpResponse(output)

 request = RequestFactory().get('/test/')
 response = view(request)

 self.assertContains(response, '...', status_code=200)

If the TestCase has a user attribute, e.g. defined in setUp() to be available to all tests, a “user” variable will be added to the template context. This is done automatically unless request is provided.

from django.contrib.auth.models import User
from django.test import TestCase

from djem.utils.tests import TemplateRendererMixin

class SomeTestCase(TemplateRendererMixin, TestCase):

 def setUp(self):

 self.user = self.user = User.objects.create_user(
 username='test.user', email='test@…', password='top_secret'
)

 def test_something(self):

 template_string = '{{ user.username }}'

 output = self.render_template(template_string, {})

 self.assertEqual(output, 'test.user')

Utils

UNDEFINED

New in version 0.7.

The UNDEFINED constant is designed for use in argument default values.

Sometimes it is necessary to know whether any value was passed into a function or not, including values traditionally used as argument defaults (such as None, False, etc). Any given value could have an explicit meaning, with some default behaviour only performed if nothing was passed in.

Take the following contrived example:

def make_thing(name, label=None):

 if not label:
 label = name

 ...

The make_thing function takes a required name argument and an optional label argument. The label defaults to the name unless overridden with something more meaningful/verbose. But what if the caller would like their thing to have no label? And what if None, False or an empty string could all indicate that? The function needs to differentiate those values from nothing being provided.

This example could be rewritten using UNDEFINED in place of None as the argument default, allowing the caller to explicitly pass None to indicate that the label should not be given a default value:

from djem import UNDEFINED

def make_thing(name, label=UNDEFINED):

 if label is UNDEFINED:
 label = name

 ...

UNDEFINED is “falsey”, so can also be used in more generic conditional statements:

from djem import UNDEFINED

value = UNDEFINED

if value:
 print('truthy')
else:
 print('falsey')

output: 'falsey'

API Reference

	Model Mixins and QuerySets
	Mixins

	QuerySets

	StaticAbstract

	Model Fields
	TimeZoneField

	Form Classes and Mixins
	UserSavable

	AuditableForm

	Form Fields
	TimeZoneField

	Auth
	ObjectPermissionsBackend

	permission_required

	PermissionRequiredMixin

	Pagination
	get_page

	Middleware
	MessageMiddleware

	AJAX
	ajax_login_required

	AjaxResponse

	Template Tags
	ifperm

	ifnotperm

	csrfify_ajax

	paginate

	form_field

	checkbox

	Utils
	General Utils

	Date/Time Utils

	Test Utils

	Settings
	DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE

	DJEM_DEFAULT_403

	DJEM_DEFAULT_PAGE_LENGTH

	DJEM_FORM_FIELD_TAG

	DJEM_UNIVERSAL_OLP

	DJEM_PERM_LOG_VERBOSITY

	Exceptions

Model Mixins and QuerySets

Mixins

Loggable

New in version 0.7.

	
class djem.models.Loggable(*args, **kwargs)

	A mixin for creating, storing, and retrieving logs on an instance. Named
logs are stored internally on the Loggable instance and persist for the
lifetime of the object. A single log is “active” at any given time and can
be freely appended to while it is.

Adds instance-based logging support to any model.

	
start_log(name)

	Start a new log with the given name. The new log becomes the
current “active” log. Queue any previous active log so that it can be
reactivated when the new log is either finished or discarded.

	Parameters

	name – The name of the log.

	
end_log()

	End the currently active log and return a (name, log) tuple, where
name is the name of the log that was ended and log is a list of
the entries that have been added to the log. Reactivate the previous
log, if any.

The returned list will be a copy of the one used to store the log
internally, allowing it to be safely manipulated without affecting the
original log.

A log must be ended in order to be retrieved.

	Returns

	A (name, log) tuple.

	
discard_log()

	Discard the currently active log. Reactivate the previous log, if any.

	
log(*lines)

	Append to the currently active log. Each given argument will be added
as a separate line to the log.

	Parameters

	lines – Individual lines to add to the log.

	
get_log(name, raw=False)

	Return the named log, as a string. The log must have been ended (via
end_log()) in order to retrieve it.

Return a raw list of lines in the log if raw=True. In this case,
the returned list will be a copy of the one used to store the log
internally, allowing it to be safely manipulated without affecting the
original log.

	Parameters

	
	name – The name of the log to retrieve.

	raw – True to return the log as a list. Returned as a string by default.

	Returns

	The log, either as a string or a list.

	
get_last_log(raw=False)

	Return the most recently finished log, as a string.

Return a raw list of lines in the log if raw=True. In this case,
the returned list will be a copy of the one used to store the log
internally, allowing it to be safely manipulated without affecting the
original log.

	Parameters

	raw – True to return the log as a list. Returned as a string by default.

	Returns

	The log, either as a string or a list.

OLPMixin

New in version 0.7.

	
class djem.models.OLPMixin(*args, **kwargs)

	A companion to Django’s PermissionsMixin that enables additional
advanced features of the object-level permission system. It is not
necessary to use this mixin in order to use object-level permissions,
it just provides additional functionality (such as logging permission
checks, optionally allowing superusers to be restricted by object-level
conditions, etc).

Inherits instance-based logging functionality from Loggable. For more information on the available features, see Advanced Features.

	
has_perm(perm, obj=None)

	A replacement for the default has_perm() method defined by Django’s PermissionsMixin.

In conjunction with the DJEM_UNIVERSAL_OLP setting, this version can force superusers to be subject to the same object-level permissions checks as regular users.

In conjunction with the DJEM_PERM_LOG_VERBOSITY, an automatic log of all permission checks can be kept, using instance-based logging.

	
clear_perm_cache()

	Clear the object-level and model-level permissions caches on the user
instance.

Auditable

Changed in version 0.7: Renamed from CommonInfoMixin. The old name is still available for backwards compatibility, but is considered deprecated.

	
class djem.models.Auditable

	Auditable is a model mixin class that provides:

	Standard user and datetime fields: user_created, user_modified, date_created, date_modified.

	An overridden objects Manager that provides access to the custom AuditableQuerySet.

	Support for Ownership checking on an instance and via AuditableQuerySet.

	
save(user=None, *args, **kwargs)

	Overridden to ensure the user_modified and date_modified fields
are always updated. The user argument is required and must be passed
a User instance, unless the DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE
setting is False.

	
owned_by(user)

	Return True if user_created matches the given user, otherwise
return False. The user can be given as an id or a User instance.

See also

	AuditableQuerySet

	The custom QuerySet used by Auditable.

	AuditableForm

	A ModelForm subclass that supports Auditable models.

	UserSavable

	A ModelForm mixin to add support for Auditable models, for forms that already have a known user.

Archivable

Changed in version 0.7: Renamed from ArchivableMixin. The old name is still available for backwards compatibility, but is considered deprecated.

	
class djem.models.Archivable

	Archivable is a model mixin class that provides:

	An is_archived Boolean field, defaulting to False.

	An overridden objects Manager that provides access to the custom ArchivableQuerySet.

	Methods for archiving and unarchiving

	
archive(*args, **kwargs)

	Archive this record.

Accepts all arguments of the save method, as it saves the instance
after setting the is_archived flag. It saves using the
update_fields keyword argument, containing the is_archived
field, whether it was provided to this method or not. If provided, it
is extended, not replaced.

	
unarchive(*args, **kwargs)

	Unarchive this record.

Accepts all arguments of the save method, as it saves the instance
after setting the is_archived flag. It saves using the
update_fields keyword argument, containing the is_archived
field, whether it was provided to this method or not. If provided, it
is extended, not replaced.

See also

	ArchivableQuerySet

	The custom QuerySet used by Archivable.

Versionable

Changed in version 0.7: Renamed from VersioningMixin. The old name is still available for backwards compatibility, but is considered deprecated.

	
class djem.models.Versionable

	Versionable is a model mixin class that provides:

	A version field that is automatically incremented on every save.

	An overridden objects Manager that provides access to the custom VersionableQuerySet.

	
save(*args, **kwargs)

	Overridden to ensure the version field is always updated.

	
exception AmbiguousVersionError

	A subclass of ModelAmbiguousVersionError specific to the Versionable class. Raised when attempting to access the version field after it has been atomically incremented.

See also

	VersionableQuerySet

	The custom QuerySet used by Versionable.

QuerySets

MixableQuerySet

New in version 0.7.

	
class djem.models.MixableQuerySet

	A mixin for QuerySet classes that simply provides an enhanced
as_manager() method that can be used to combine
the queryset class with any number of other queryset classes automatically.

	
classmethod as_manager(*other_querysets)

	Similar to the as_manager classmethod available on regular Django
queryset classes [https://docs.djangoproject.com/en/stable/topics/db/managers/#creating-a-manager-with-queryset-methods],
this returns an instance of Manager with a copy of the queryset’s
methods. However, it also accepts other queryset classes as arguments
and includes their methods in the created Manager also. This
allows easily creating combinations of this queryset class with other
custom queryset classes, without needing to manually create an extra
class to do the grouping.

This is only useful where the querysets being combined do not contain
conflicting methods. Method inheritance is supported (i.e. multiple
querysets can contain the same method and they will be resolved in
normal method resolution order), but depending on the logic of those
methods, they may not be compatible. In such cases, an extra class
resolving any incompatibilities is still required.

AuditableQuerySet

Changed in version 0.7: Renamed from CommonInfoQuerySet. The old name is still available for backwards compatibility, but is considered deprecated.

	
class djem.models.AuditableQuerySet(model=None, query=None, using=None, hints=None)

	Provides custom functionality pertaining to the fields provided by
Auditable.

	
as_manager()

	See MixableQuerySet.as_manager().

	
create(_user=None, **kwargs)

	Overridden to ensure a user is provided to the save() call on the
model instance. The _user argument (named to reduce potential
conflicts with model field names) is the user instance to pass through.
It is required unless the DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE
setting is False.

New in version 0.7.

	
get_or_create(defaults=None, _user=None, **kwargs)

	Overridden to ensure a user is provided to the save() call on the
model instance, if a record needs to be created. The _user argument
(named to reduce potential conflicts with model field names) is the
user instance to pass through. It is required unless the
DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE setting is False.

New in version 0.7.

	
update(_user=None, **kwargs)

	Overridden to ensure the user_modified and date_modified fields
are always updated. The _user argument (named to reduce potential
conflicts with model field names) is the user instance to update
user_modified with. It is required unless the
DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE setting is False.

	
update_or_create(defaults=None, _user=None, **kwargs)

	Overridden to ensure a user is provided to the save() call on the
model instance, whether the record id being created or updated. The
_user argument (named to reduce potential conflicts with model
field names) is the user instance to pass through. It is required
unless the DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE setting
is False.

New in version 0.7.

	
owned_by(user)

	Return a queryset of records “owned” by the given user, as per the
user_created field. user can be a User instance or an id.

ArchivableQuerySet

	
class djem.models.ArchivableQuerySet(model=None, query=None, using=None, hints=None)

	Provides custom functionality pertaining to the is_archived field
provided by Archivable.

	
as_manager()

	See MixableQuerySet.as_manager().

	
archived()

	Filter the queryset to archived records (is_archived=True).

New in version 0.7.

	
unarchived()

	Filter the queryset to unarchived records (is_archived=False).

New in version 0.7.

VersionableQuerySet

Changed in version 0.7: Renamed from VersioningQuerySet. The old name is still available for backwards compatibility, but is considered deprecated.

	
class djem.models.VersionableQuerySet(model=None, query=None, using=None, hints=None)

	Provides custom functionality pertaining to the version field
provided by Versionable.

	
as_manager()

	See MixableQuerySet.as_manager().

	
update(**kwargs)

	Overridden to ensure the version field is always updated.

StaticAbstract

	
class djem.models.StaticAbstract

	StaticAbstract is a combination of Auditable, Archivable and Versionable. It is designed as an abstract base class for models, rather than a mixin itself. It includes all the fields and functionality offered by each of the mixins.

Model Fields

TimeZoneField

	
class djem.models.TimeZoneField(**kwargs)

	TimeZoneField is a model field that stores timezone name strings (‘Australia/Sydney’, ‘US/Eastern’, etc) in the database and provides access to TimeZoneHelper instances for the stored timezones. TimeZoneField will only store valid timezone strings, or a null value if null=True. It will not store arbitrary strings, including the empty string.

The default form field is a TypedChoiceField with a Select widget.

TimeZoneField provides default values for the following constructor arguments:

	
choices

	Defaults to a list of 2-tuples containing the timezones provided by pytz.common_timezones [http://pytz.sourceforge.net/#helpers]. Both items of each 2-tuple simply contain the timezone name. This is equivalent to:

choices = [(tz, tz) for tz in pytz.common_timezones]

If passing in a custom list of choices, it must match this format.
The default value is stored on TimeZoneField in the CHOICES constant.

	
max_length

	Defaults to 63. This default value is stored on TimeZoneField in the MAX_LENGTH constant.

Example, using TimeZoneField on a custom User model:

models.py
from django.contrib.auth.models import AbstractBaseUser
from djem.models import TimeZoneField

class CustomUser(AbstractBaseUser):
 ...
 time_zone = TimeZoneField()

>>> user = CustomUser.objects.filter(timezone='Australia/Sydney').first()
>>> user.timezone
<TimeZoneHelper: Australia/Sydney>

Note

Use of TimeZoneField requires pytz [http://pytz.sourceforge.net/] to be installed. It will raise an exception during instantiation if pytz is not available.

Note

Use of TimeZoneField only makes sense if USE_TZ [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_TZ] is True.

See also

The djem.forms.TimeZoneField form field.

Form Classes and Mixins

UserSavable

New in version 0.7.

	
class djem.forms.UserSavable

	A mixin for a Django ModelForm that adds support for models using the
Auditable model mixin. It handles providing a user
instance to the model’s save() method when the form’s own save()
method is called, as is required by Auditable.

This mixin assumes the presence of a self.user attribute that the
save() method can use. It is designed for use by forms that already
accept and store a known user, e.g. as a constructor argument.

For a form that provides the same customisation of the save() method
and includes user as a constructor argument, see AuditableForm.

AuditableForm

Changed in version 0.7: Renamed from CommonInfoForm. The old name is still available for backwards compatibility, but is considered deprecated.

	
class djem.forms.AuditableForm(*args, user=None, **kwargs)

	A Django ModelForm that is customised to support models using the
Auditable model mixin. It handles providing a user
instance to the model’s save() method when the form’s own save()
method is called, as is required by Auditable. It
also adds a user keyword argument to the constructor so the save()
method has a known user to work with. The user argument is required if
the field is bound, otherwise it is optional. The given user is stored in
the user instance attribute. Subclasses may choose
to use the known user for their own purposes.

For a mixin that provides the same customisation of the save() method
without the extra constructor argument (e.g. for use by forms that already
accept and store a known user), see UserSavable.

	
user

	The user model instance provided to the constructor on instantiation. May be None on unbound forms.

Form Fields

TimeZoneField

	
class djem.forms.TimeZoneField(**kwargs)

	A TypedChoiceField with defaults applied for coerce and choices.

	Default widget: Select.

	Empty value: '' (the empty string), by default.

	Normalizes to: a TimeZoneHelper instance.

	Validates that the given value exists in the list of choices and can be
coerced.

	Error message keys: required, invalid_choice.

	
coerce

	Defaults to a function that accepts a timezone name string (‘Australia/Sydney’, ‘US/Eastern’, etc) and returns a TimeZoneHelper instance for that timezone.

	
choices

	Defaults to a list of 2-tuples containing the timezones provided by pytz.common_timezones [http://pytz.sourceforge.net/#helpers]. Both items of each 2-tuple simply contain the timezone name. This is equavalient to:

choices = [(tz, tz) for tz in pytz.common_timezones]

Note

Use of TimeZoneField requires pytz [http://pytz.sourceforge.net/] to be installed. If pytz is not available, the default choices list will be empty and no TimeZoneHelper objects will be able to be instantiated.

Note

Use of TimeZoneField only makes sense if USE_TZ [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-USE_TZ] is True.

See also

The djem.models.TimeZoneField model field.

Auth

ObjectPermissionsBackend

	
class djem.auth.ObjectPermissionsBackend

	A custom Django authentication backend providing support for object-level permissions.

Does not provide any additional mechanisms for authentication, only authorisation.

To use, list in the Django AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',
 'djem.auth.ObjectPermissionsBackend'
]

permission_required

	
djem.auth.permission_required(*perms, login_url=None, raise_exception=settings.DJEM_DEFAULT_403)

	
New in version 0.5.

A replacement for Django’s own permission_required decorator that adds support for object-level permissions.

Object-level permissions are specified as a tuple of two strings: the first naming the permission, the second naming the view function keyword argument that contains the primary key of the object to test.

E.g. Specifying one standard (model-level) and one object-level permission:

from djem.auth import permission_required

@permission_required('polls.view_questions', ('polls.vote_on_question', 'question'))
def cast_vote(request, question):
 ...

Checking the permission involves querying for an instance of the model the permission is for, using the primary key specified in the named argument. If such an instance cannot be found, a Http404 exception is raised. If an instance is found, and the user has the appropriate permission, the primary key argument is replaced with the instance. This allows the view access to the instance without needing to query for it again.

In the example above, question argument as seen by the view will be a Question instance, not the primary key as was originally passed to the function.

Behaviour of the login_url and raise_exception keyword arguments is as per the original, except that the default value for raise_exception can be specified with the DJEM_DEFAULT_403 setting.

PermissionRequiredMixin

	
class djem.auth.PermissionRequiredMixin

	
New in version 0.5.

A replacement for Django’s own PermissionRequiredMixin class-based view mixin that adds support for object-level permissions.

Object-level permissions are specified as a tuple of two strings: the first naming the permission, the second naming the view function keyword argument that contains the primary key of the object to test.

The permission/s can be specified as an attribute of the view class, or via the URLconf.

E.g. Specifying one standard (model-level) and one object-level permission as an attribute of the class:

views.py
from django.views import View
from djem.auth import PermissionRequiredMixin

class CastVote(PermissionRequiredMixin, View):

 permission_required = ['polls.view_questions', ('polls.vote_on_question', 'question')]
 ...

E.g. Specifying one standard (model-level) and one object-level permission via the URLconf:

urls.py
from django.conf.urls import url
from .views import CastVote

urlpatterns = [
 url(
 r'^question/(?P<question>\d+)/votes/cast/$',
 CastVote.as_view(permission_required=['polls.view_questions', ('polls.vote_on_question', 'question')]),
 name='cast-vote'
)
]

As with Django’s version, the permission_required attribute can be specified as a single permission or a sequence of permissions. When specifying only a single permission, only model-level permissions (i.e. a string) are valid - object-level permissions (i.e. a two-tuple) are not. Object-level permissions must always be provided as an item of an iterable.

class CastVote(PermissionRequiredMixin, View):

 # Valid
 permission_required = 'polls.view_questions'

 # Valid
 permission_required = ['polls.view_questions', 'polls.vote_on_question']

 # Valid
 permission_required = ['polls.view_questions', ('polls.vote_on_question', 'question')]

 # INVALID
 permission_required = ('polls.vote_on_question', 'question')

Checking the permission involves querying for an instance of the model the permission is for, using the primary key specified in the named argument. If such an instance cannot be found, a Http404 exception is raised. If an instance is found, and the user has the appropriate permission, the primary key argument is replaced with the instance. This allows the view access to the instance without needing to query for it again.

In the examples above, question argument as seen by the view will be a Question instance, not the primary key as was originally passed to the function.

Behaviour of the login_url and raise_exception attributes is as per the original, except that the default value for raise_exception can be specified with the DJEM_DEFAULT_403 setting.

Pagination

get_page

	
djem.pagination.get_page(number, object_list, per_page=None, **kwargs)

	
New in version 0.5.

A simple wrapper around a Django Paginator that immediately invokes its page() method and returns a Page object.

number is the number of the page to retrieve, as a 1-based index. If the given value is not an integer, or it is less than 1, it is treated as 1. If it is greater than the total number of pages, it is treated as Paginator.num_pages.

object_list is the sequence of items from which to retrieve the specified page - as a list, tuple, QuerySet or any other sliceable object with a count() or __len__() method.

per_page is the number of results to be included in each page. Not required if DJEM_DEFAULT_PAGE_LENGTH has been defined.

All other keyword arguments of the Paginator constructor are also accepted and passed through to the Paginator instance created internally.

See also

	DJEM_DEFAULT_PAGE_LENGTH

	The setting for controlling the default value of the per_page argument.

	paginate

	A templatetag for rendering a block of pagination links based on a given Page object.

Middleware

MessageMiddleware

	
class djem.middleware.MessageMiddleware

	
New in version 0.6.

Middleware that handles temporary messages, differentiating between those added as part of an AJAX request vs those that are not. Different storage backends are used for each: the default backend (configurable via MESSAGE_STORAGE) for standard requests and a custom memory-only backend for AJAX requests.

Using a memory-only backend, which does not offer any persistence between requests, prevents simultaneous AJAX requests interfering with each other’s message stores, avoiding the documented caveat [https://docs.djangoproject.com/en/stable/ref/contrib/messages/#behavior-of-parallel-requests] of Django’s out-of-the-box messages framework.

This is a drop-in replacement for Django’s own MessageMiddleware:

before
MIDDLEWARE = [
 ...
 'django.contrib.messages.middleware.MessageMiddleware'
 ...
]

after
MIDDLEWARE = [
 ...
 'djem.middleware.MessageMiddleware'
 ...
]

Important

MessageMiddleware uses the HttpRequest object’s is_ajax() method to differentiate between AJAX and non-AJAX requests. An XMLHttpRequest call must use the appropriate headers [https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.is_ajax] in order to be correctly detected.

See also

	AjaxResponse

	An extension of Django’s JsonResponse that, among other things, will automatically include any messages that are in the message store as part of the response.

AJAX

ajax_login_required

New in version 0.7.

	
djem.ajax.ajax_login_required(view_fn)

	Simple decorator that returns HttpResponseForbidden if the user is not
authenticated, and executes the decorated function if they are. Designed
for use by views accessed with AJAX requests, where redirecting to the
login view is not useful.

AjaxResponse

	
class djem.ajax.AjaxResponse(request, data=None, success=None, **kwargs)

	An extension of Django’s JsonResponse, differing in the following ways:

	The data argument is optional. If provided, it must always be a dict instance. If not provided, a new dict instance will be created and used. Using the safe argument of JsonResponse to JSON-encode other types is not supported (see the documentation [https://docs.djangoproject.com/en/stable/ref/request-response/#serializing-non-dictionary-objects] for the safe argument of JsonResponse).

	The first positional argument should be a Django HttpRequest instance, used to retrieve messages from the Django message framework [https://docs.djangoproject.com/en/stable/ref/contrib/messages/] store and add them to the data dictionary under the “messages” key. The messages are added as a list of dictionaries containing:

	message: The message string.

	tags: A string of the tags applied to the message, space separated.

	The optional argument success can be set to add a “success” key to the data dictionary. The “success” key will always be added as a boolean value, regardless of what was passed (though it will not be added at all if nothing was passed).

With the exception of safe, as noted above, AjaxResponse accepts and supports all arguments of JsonResponse.

To help prevent XSS vulnerabilities [https://docs.djangoproject.com/en/stable/topics/security/#cross-site-scripting-xss-protection], the messages from the Django messages framework that are included in the response are automatically escaped. If a message should legitimately contain HTML, it can be marked as safe [https://docs.djangoproject.com/en/stable/ref/utils/#module-django.utils.safestring] to prevent it being escaped.

See also

	MessageMiddleware

	A replacement for Django’s own MessageMiddleware that avoids simultaneous requests interfering with each other’s message stores - an issue made more likely when making use of AJAX.

Template Tags

Djem provides several template tags as part of the djem tag library.

Many of the tags are designed to help keep things DRY [https://docs.djangoproject.com/en/stable/misc/design-philosophies/#don-t-repeat-yourself-dry] and alleviate boilerplate code. The output of such tags is often dictated by a template, for which Djem will provide a default, but which can be overridden per-project using Django’s standard template overriding mechanism [https://docs.djangoproject.com/en/stable/howto/overriding-templates/].

ifperm

The {% ifperm %} block tag performs an object-level permission check and, if that check passes, renders contents of the block. To perform the permission check, it requires a User instance, the name of the permission and a model instance. The check will pass if the given user has the given permission on the given instance.

{% load djem %}
...
{% ifperm user 'polls.vote_on_question' question_obj %}
 Vote Now
{% endifperm %}
...

The tag supports an else block, which will be rendered if the user does not have permission.

{% load djem %}
...
{% ifperm user 'polls.vote_on_question' question_obj %}
 Vote Now
{% else %}
 You do not have permission to vote on this question.
{% endifperm %}
...

ifnotperm

The {% ifnotperm %} block tag performs an object-level permission check and, if that check fails, the contents of the block are rendered. To perform the permission check, it requires a User instance, the name of the permission and a model instance. The check will fail if the given user does not have the given permission on the given instance.

{% load djem %}
...
{% ifnotperm user 'polls.vote_on_question' question_obj %}
 You do not have permission to vote on this question.
{% endifnotperm %}
...

The tag supports an else block, which will be rendered if the user does have permission.

{% load djem %}
...
{% ifnotperm user 'polls.vote_on_question' question_obj %}
 You do not have permission to vote on this question.
{% else %}
 Vote Now
{% endifnotperm %}
...

csrfify_ajax

New in version 0.6.

The {% csrfify_ajax %} template tag renders a HTML <script> tag containing JavaScript to configure the X-CSRFToken header on outgoing AJAX requests where necessary (e.g. POST requests). The JavaScript is library-specific, and is stored in templates under djem/csrfify_ajax/, e.g. djem/csrfify_ajax/jquery.html.

Support for jQuery is included by default. Additional libraries can be added by creating project-specific templates for them under the djem/csrfify_ajax/ path and providing the name of the template as an argument to the tag. Such templates have access to the CSRF token via the {{ csrf_token }} template variable.

{% load djem %}

{# Uses jquery as default argument #}
{% csrfify_ajax %}

{# But it can be given explicitly #}
{% csrfify_ajax 'jquery' %}

{# As can another library, provided a template exists to support it #}
{% csrfify_ajax 'some_other_lib' %}

paginate

New in version 0.6.

The {% paginate %} template tag renders the pagination links associated with a result list. Simply pass it the same Django Page instance used to render the list itself and it will render appropriate page navigation links.

For example, where user_list is a Page instance:

{% load djem %}
...
{% for user in user_list %}
 {{ user.name }}
{% endfor %}
{% paginate user_list %}
...

The structure of the navigation block that is rendered is controlled by the djem/pagination.html template.

See also

	get_page()

	A helper utility for retrieving a Page instance.

form_field

New in version 0.6.

The {% form_field %} template tag renders a form field in a consistent, customisable fashion. The structure of the output is controlled by the djem/form_field.html template. By default, it provides:

	A wrapping element with the following features:

	By default, the element is a <div>, but this can be modified using the DJEM_FORM_FIELD_TAG setting.

	The element is given the following CSS classes:

	form-field

	Any classes defined by the form, either declaratively [https://docs.djangoproject.com/en/stable/ref/forms/api/#styling-required-or-erroneous-form-rows] or programatically [https://docs.djangoproject.com/en/stable/ref/forms/api/#django.forms.BoundField.css_classes].

	Any classes passed to the template tag.

	The element is given additional HTML attributes based on keyword arguments passed to the template tag.

	The field’s label.

	The field’s error list (when applicable). The error list is the Django default <ul class="errorlist">.

	The field itself.

	A <div> with the CSS class form-field__help containing the field’s help text, if any.

{% load djem %}
...
{# Basic usage #}
{% form_field form.first_name %}

{# Adding extra CSS classes to the wrapper #}
{% form_field form.first_name 'one-half' %}
{% form_field form.last_name 'one-half' %}

{# Adding extra HTML attributes to the wrapper #}
{% url 'verify-email' as verify_email_url %}
{% form_field form.email data_url=verify_email_url %}
...

Note

Since attribute names can contain dashes, which are invalid in Python keyword argument names, any underscores in the argument name will be converted into dashes to form the HTML attribute name.

checkbox

New in version 0.6.

The {% checkbox %} template tag is very similar to the {% form_field %} tag. It likewise renders form fields, and the same djem/form_field.html template controls the output, but it is specifically designed for checkboxes. The differences lie in the way the field’s <label> element is rendered:

	it is included after the field itself, not before

	it is given the check-label CSS class, allowing it to be styled independently of regular labels

Also, unlike {% form_field %}, {% checkbox %} is a block tag. It uses the content between its start and end tags as the label for the field. Specifically, this allows HTML to be included in the label text:

{% load djem %}
...
{% checkbox form.terms %}
 I agree to the Terms of Service.
{% endcheckbox %}
...

If no content is entered between the start and end tags, the field’s default label text is used. In this case, the <label> element will still be included after the field itself, instead of before, and will still receive the check-label class.

Note

Don’t go too crazy with HTML in the label text. It is still rendered inside a <label> element, so should only contain markup that is valid within <label>.

Note

{% checkbox %} is not strictly limited to actual checkbox inputs. You could, if for some reason it was appropriate, use it for any form field.

Utils

	General Utils
	UNDEFINED

	Date/Time Utils
	TimeZoneHelper

	Test Utils
	setup_test_app()

	MessagingRequestFactory

	TemplateRendererMixin

General Utils

UNDEFINED

	
djem.UNDEFINED

	
New in version 0.7.

The UNDEFINED constant is a falsey value designed for use in argument default values, for situations in which any value given (including traditional argument default values such as None) have an explicit meaning.

from djem import UNDEFINED

def make_thing(name, label=UNDEFINED):

 # None, the empty string, or False could indicate "no label" and need
 # to be distinguished from no value being provided
 if label is UNDEFINED:
 label = name

 ...

It can also be used in more generic conditional statements:

from djem import UNDEFINED

value = UNDEFINED

if value:
 print('truthy')
else:
 print('falsey')

output: 'falsey'

Date/Time Utils

TimeZoneHelper

	
class djem.utils.dt.TimeZoneHelper(tz)

	A simple helper class that provides shortcuts for getting the current date and the current datetime for a known local timezone.

tz should be a valid timezone name string (as accepted by the pytz.timezone function) or a pytz tzinfo instance (as returned by the pytz.timezone function).

	
tz

	The pytz tzinfo instance representing the timezone used by this TimeZoneHelper instance.

	
name

	The name of the timezone represented by this TimeZoneHelper instance, as a string.
Equivalent to tz.zone, where tz is the instance's tz attribute.

	
now()

	Return the current datetime in the local timezone.

	
today()

	Return the current date in the local timezone.

Warning

Be careful when dealing with local times. Django recommends you “use UTC in the code and use local time only when interacting with end users”, with the conversion from UTC to local time usually only being performed in templates. And the pytz documentation notes “The preferred way of dealing with times is to always work in UTC, converting to localtime only when generating output to be read by humans”. See the Django timezone documentation [https://docs.djangoproject.com/en/stable/topics/i18n/timezones/] and the pytz documentation [http://pytz.sourceforge.net/].

Test Utils

setup_test_app()

New in version 0.7.

	
djem.utils.tests.setup_test_app(package, label=None)

	Setup a Django test app for the provided package to allow test-only models
to be used.

This function should be called from myapp.tests.__init__ like so:

setup_test_app(__package__)

This will create an app with the label “myapp_tests”. If a specific app
label is required, it can be provided explicitly:

setup_test_app(__package__, 'mytests')

Using either of the above, models can be placed in myapp.tests.models
and be discovered and used just like regular models by the test suite. As
long as myapp.tests is not imported by anything that forms part of the
standard Django runtime environment, these models will not be picked up in
that environment, and will be isolated to the test suite only.

This solution is adapted from Simon Charette’s comment on Django ticket #7835 [https://code.djangoproject.com/ticket/7835#comment:46].

MessagingRequestFactory

New in version 0.6.

	
class djem.utils.tests.MessagingRequestFactory

	An extension of Django’s RequestFactory helper for tests [https://docs.djangoproject.com/en/stable/topics/testing/advanced/#the-request-factory] that enables the use of the messages framework within the generated request. It does not use the standard message storage backend (as per the MESSAGE_STORAGE setting), but rather a memory-only backend that does not involve the use of sessions, cookies or any other means of persistent storage of the messages. Thus, messages need to be read in the same request they were added, or they will be lost.

It is used in the same way as RequestFactory:

from django.contrib.auth.models import User
from django.contrib import messages
from django.test import TestCase

from djem.utils.tests import MessagingRequestFactory

Views expected to set messages
from .views import MyView, my_view

class SimpleTest(TestCase):

 def setUp(self):

 self.factory = MessagingRequestFactory()
 self.user = User.objects.create_user(
 username='test.user', email='test@…', password='top_secret'
)

 def test_details(self):

 request = self.factory.get('/customer/details')

 # Recall that middleware are not supported. You can simulate a
 # logged-in user by setting request.user manually.
 request.user = self.user

 # Test my_view() as if it were deployed at /customer/details
 response = my_view(request)

 # Use this syntax for class-based views
 response = MyView.as_view()(request)

 self.assertEqual(response.status_code, 200)

 # Test the expected message was set
 message_list = list(messages.get_messages(request))
 self.assertEqual(len(message_list), 1)
 self.assertEqual(message_list[0].message, 'An error occurred.')

TemplateRendererMixin

New in version 0.6.

	
class djem.utils.tests.TemplateRendererMixin

	A mixin for TestCase classes whose tests render templates from strings (as opposed to rendering them from files), using the Django template engine.

	
render_template(template_string, context, request=None, flatten=True)

	Render the given string as a template, with the given context and
request (if provided).

If request is NOT provided, and a self.user attribute is
available on the TestCase, a “user” variable will be automatically
added to the context.

The rendered output will be stripped of any leading or trailing
whitespace, and can optionally have excess whitespace “flattened” by
passing the flatten argument as True (the default). Flattening
removes ALL whitespace from between HTML tags and compresses all other
whitespace down to a single space.

	Parameters

	
	template_string – The string to render as a template.

	context – The context with which to render the template.

	request – The HttpRequest with which to render the template context.

	flatten – True to “flatten” the rendered output (default), False
to return the output with all internal whitespace intact.

	Returns

	The rendered template output.

from django.contrib.auth.models import User
from django.test import TestCase

from djem.utils.tests import TemplateRendererMixin

class SomeTestCase(TemplateRendererMixin, TestCase):

 def setUp(self):

 self.user = self.user = User.objects.create_user(
 username='test.user', email='test@…', password='top_secret'
)

 def test_something(self):

 template_string = (
 '{% if something %}'
 ' <p>'
 ' The user is: {{ user.username }}'
 ' </p>'
 '{% endif %}'
)

 output = self.render_template(template_string, {
 'something': True
 })

 self.assertEqual(output, '<p> The user is: test.user </p>')

Settings

The following settings can be added to your project’s settings.py file to customise the behaviour of Djem features.

DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE

Changed in version 0.7: Renamed from DJEM_COMMON_INFO_REQUIRE_USER_ON_SAVE. The old setting is still available for backwards compatibility, but is considered deprecated.

Default: True

By default, the save() method of Auditable and various methods of AuditableQuerySet (e.g. create(), update(), etc) require being passed a user model instance, so they can automatically set the user_created and/or user_modified fields that Auditable provides. This behaviour can cause issues if you are using third party code that calls any of these methods, as it will not pass this required argument.

Djem provides AuditableForm and UserSavable to enable Django ModelForms to work with models making use of Auditable. But if you can’t use similar wrappers around other third party code invoking these methods, this setting can help.

Setting DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE to False removes the “required” nature of this additional user argument. It will still be accepted, and will still be used as per usual if it is provided. But if it is not provided, no exception will be raised, and the fields that would ordinarily be populated by it will simply be left alone.

Warning

The user_created and user_modified fields will still be required. When creating instances of models using Auditable, and a user instance is not passed to the save() method, these fields will need to be populated manually, or an IntegrityError will be raised.

Warning

Using this setting can reduce the accuracy of user_modified, as it is no longer guaranteed to be updated by any save/update to the model instance. It will be up to you to ensure that this field is updated when necessary.

DJEM_DEFAULT_403

New in version 0.5.

Default: False

Specifies the default behaviour of the permission_required() decorator and djem.auth.PermissionRequired class-based view mixin when a user does not have the specified permission/s. If True, the PermissionDenied exception will be raised, invoking the 403 handler. If False, the user will be redirected to the appropriate login url.

This affects default behaviour only - individual uses of permission_required() and djem.auth.PermissionRequired can customise it.

DJEM_DEFAULT_PAGE_LENGTH

New in version 0.5.

Default: None

The default page length to use for the djem.pagination.get_page() helper function. Adding this setting removes the need to provide a page length argument to every djem.pagination.get_page() call. See Controlling page length for more details.

DJEM_FORM_FIELD_TAG

New in version 0.6.

Default: 'div'

The HTML tag to use for the wrapping element rendered around form fields when using the form_field or checkbox template tags.

DJEM_UNIVERSAL_OLP

New in version 0.7.

Default: False

In conjunction with a custom user model including OLPMixin, setting this to True enables support for forcing superusers to undergo the same object-level permissions checking that regular users do, allowing OLP logic to actually deny permissions to superusers where relevant.

DJEM_PERM_LOG_VERBOSITY

New in version 0.7.

Default: 0

In conjunction with a custom user model including OLPMixin, this setting controls the level of automatic permission logging performed by OLPMixin.has_perm():

	0: No automatic logging

	1: Logs are automatically created for each permission check, with minimal automatic entries

	2: Logs are automatically created for each permission check, with more informative automatic entries

In addition to the automatic entries, a value of 1 or 2 allow manual log entries to be added from within object-level access methods with no need to manually start/finish any logs.

Exceptions

The following custom exceptions are raised by Djem.

	
exception djem.exceptions.ModelAmbiguousVersionError

	Raised when a model’s version field contains an ambiguous value, such
as after it has been atomically incremented.

Change Log

0.8.0 (2022-12-12)

	Added compatibility with Django versions 4.0 and 4.1

	Dropped support for Django versions below 3.2

	Updated Auditable and Versionable to use self._state.adding to differentiate between records being added or updated

	Switched development environment from Vagrant to Docker

Note: As of this release, TimeZoneField/TimeZoneHelper still require pytz, despite the Django 4.0+ move to zoneinfo.

0.7.2 (2021-10-05)

	Removed public djem.auth.get_user_log_verbosity() function due to the apparent potential for causing cyclic imports, as observed in real world usage.

0.7.1 (2021-08-25)

	Fixed readthedocs configuration

	Fixed README badges

0.7 (2021-08-24)

A number of features are renamed. In all cases, the old names remain available for backwards compatibility, but are deprecated.

	Dropped support for Python 2 (minimum supported version is 3.6)

	Dropped support for Django versions below 2.2

	Renamed CommonInfoMixin and CommonInfoQuerySet to Auditable and AuditableQuerySet, respectively

	Renamed ArchivableMixin to Archivable

	Renamed VersioningMixin and VersioningQuerySet to Versionable and VersionableQuerySet, respectively

	Renamed CommonInfoForm to AuditableForm

	Renamed DJEM_COMMON_INFO_USER_REQUIRED_ON_SAVE setting to DJEM_AUDITABLE_USER_REQUIRED_ON_SAVE

	Added UNDEFINED constant

	Added Loggable for instance-based logging

	Added OLPMixin for custom user models, to support advanced OLP-related functionality

	Added MixableQuerySet mixin for custom QuerySet classes

	Added DJEM_UNIVERSAL_OLP setting

	Added DJEM_PERM_LOG_VERBOSITY setting

	Added AuditableQuerySet create(), get_or_create(), and update_or_create() methods

	Added ArchivableQuerySet archived() and unarchived() methods

	Added ajax_login_required() decorator

	Added UserSavable mixin for forms

	Removed default implementations of _user_can_change_*() and _user_can_delete_*() on Auditable - this was far too specific a use-case to be the default

	Removed ArchivableQuerySet’s archive() and unarchive() methods

	Removed Archivable’s live and archived Managers

	Removed explicit Manager classes for mixins

	Moved custom QuerySet classes for mixins into djem.models.models

0.6.4 (2018-12-06)

	Fixed setup.py to include include_package_data=True

0.6.3 (2018-12-06)

	Updated MANIFEST.in to include the templates directory

0.6.2 (2018-03-25)

	Fixed #2: Object level access now defaults open when no model method exists to define it explicitly

0.6.1 (2018-03-02)

	Updated PyPi details

0.6 (2018-03-02)

	Renamed project

	Added csrfify_ajax template tag

	Added paginate template tag

	Added form_field and checkbox template tags

	Added MessageMiddleware

	Added MessagingRequestFactory

	Added TemplateRendererMixin

	Updated AjaxResponse to allow message strings marked as safe to skip being escaped

	Moved AjaxResponse from djem.misc.AjaxResponse to djem.ajax.AjaxResponse. Also removed shortcut import djem.AjaxResponse.

	Moved get_page() from djem.misc.get_page to djem.pagination.get_page. Also removed shortcut import djem.get_page.

0.5 (unreleased)

Never released: project renaming took precedence. These features were released under 0.6, and the new project name, instead.

	Added replacements for permission_required decorator and PermissionRequiredMixin that support object-level permissions

	Added get_page() helper function

	Added Table helper class

	Added M and Mon helper classes for simple code performance debugging

	Added mon() decorator as a shortcut for monitoring a function

	Added inspection/prettyprint utilities for debugging

	Added extensible Developer class as a home for shortcuts to common user-based operations useful to developers

0.4.3 (2016-09-17)

	Added authenticate() method to ObjectPermissionsBackend, fixing a bug where it broke authentication if a user’s credentials were not authenticated by earlier backends

0.4.2 (2016-06-21)

	Fixed missing commits under 0.4.1 tag

0.4.1 (2016-06-21)

	Fixed documentation build issues on readthedocs.org

0.4 (2016-06-21)

	Added AjaxResponse

	Added GOODIES_COMMON_INFO_REQUIRE_USER_ON_SAVE setting

	Added object-level permission support (ObjectPermissionsBackend, ifperm and ifnotperm template tags)

	Updated CommonInfoMixin to provide default object-level permissions for subclasses, based on ownership

0.3 (2016-03-19)

	Added TimeZoneField/TimeZoneHelper

	Cleaned code as per isort and flake8

Pre-0.3

	CommonInfoMixin, with associated manager and queryset

	ArchivableMixin, with associated manager and queryset

	VersioningMixin, with associated manager and queryset

	StaticAbstract parent model, with associated manager and queryset

	CommonInfoForm for ModelForms based on CommonInfoMixin models

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 djem	

 	
 	
 djem.ajax	

 	
 	
 djem.auth	

 	
 	
 djem.exceptions	

 	
 	
 djem.forms.bases	

 	
 	
 djem.forms.fields	

 	
 	
 djem.middleware	

 	
 	
 djem.models.fields	

 	
 	
 djem.models.models	

 	
 	
 djem.pagination	

 	
 	
 djem.templatetags.djem	

 	
 	
 djem.utils.dt	

 	
 	
 djem.utils.tests	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ajax_login_required() (in module djem.ajax)

 	AjaxResponse (class in djem.ajax)

 	Archivable (class in djem.models)

 	ArchivableQuerySet (class in djem.models)

 	archive() (djem.models.Archivable method)

 	archived() (djem.models.ArchivableQuerySet method)

 	
 	as_manager() (djem.models.ArchivableQuerySet method)

 	(djem.models.AuditableQuerySet method)

 	(djem.models.MixableQuerySet class method)

 	(djem.models.VersionableQuerySet method)

 	Auditable (class in djem.models)

 	AuditableForm (class in djem.forms)

 	AuditableQuerySet (class in djem.models)

C

 	
 	
 checkbox

 	template tag

 	choices (djem.forms.TimeZoneField attribute)

 	(djem.models.TimeZoneField attribute)

 	
 	clear_perm_cache() (djem.models.OLPMixin method)

 	coerce (djem.forms.TimeZoneField attribute)

 	create() (djem.models.AuditableQuerySet method)

 	
 csrfify_ajax

 	template tag

D

 	
 	discard_log() (djem.models.Loggable method)

 	djem (module)

 	djem.ajax (module)

 	djem.auth (module)

 	djem.exceptions (module)

 	djem.forms.bases (module)

 	djem.forms.fields (module)

 	djem.middleware (module)

 	djem.models.fields (module)

 	djem.models.models (module)

 	djem.pagination (module)

 	djem.templatetags.djem (module)

 	djem.utils.dt (module)

 	
 	djem.utils.tests (module)

 	
 DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE

 	setting

 	
 DJEM_DEFAULT_403

 	setting

 	
 DJEM_DEFAULT_PAGE_LENGTH

 	setting

 	
 DJEM_FORM_FIELD_TAG

 	setting

 	
 DJEM_PERM_LOG_VERBOSITY

 	setting

 	
 DJEM_UNIVERSAL_OLP

 	setting

E

 	
 	end_log() (djem.models.Loggable method)

F

 	
 	
 form_field

 	template tag

G

 	
 	get_last_log() (djem.models.Loggable method)

 	get_log() (djem.models.Loggable method)

 	
 	get_or_create() (djem.models.AuditableQuerySet method)

 	get_page() (in module djem.pagination)

H

 	
 	has_perm() (djem.models.OLPMixin method)

I

 	
 	
 ifnotperm

 	template tag

 	
 	
 ifperm

 	template tag

L

 	
 	log() (djem.models.Loggable method)

 	
 	Loggable (class in djem.models)

M

 	
 	max_length (djem.models.TimeZoneField attribute)

 	MessageMiddleware (class in djem.middleware)

 	
 	MessagingRequestFactory (class in djem.utils.tests)

 	MixableQuerySet (class in djem.models)

 	ModelAmbiguousVersionError

N

 	
 	name (djem.utils.dt.TimeZoneHelper attribute)

 	
 	now() (djem.utils.dt.TimeZoneHelper method)

O

 	
 	ObjectPermissionsBackend (class in djem.auth)

 	OLPMixin (class in djem.models)

 	
 	owned_by() (djem.models.Auditable method)

 	(djem.models.AuditableQuerySet method)

P

 	
 	
 paginate

 	template tag

 	
 	permission_required() (in module djem.auth)

 	PermissionRequiredMixin (class in djem.auth)

R

 	
 	render_template() (djem.utils.tests.TemplateRendererMixin method)

S

 	
 	save() (djem.models.Auditable method)

 	(djem.models.Versionable method)

 	
 setting

 	DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE

 	DJEM_DEFAULT_403

 	DJEM_DEFAULT_PAGE_LENGTH

 	DJEM_FORM_FIELD_TAG

 	DJEM_PERM_LOG_VERBOSITY

 	DJEM_UNIVERSAL_OLP

 	
 	setup_test_app() (in module djem.utils.tests)

 	start_log() (djem.models.Loggable method)

 	StaticAbstract (class in djem.models)

T

 	
 	
 template tag

 	checkbox

 	csrfify_ajax

 	form_field

 	ifnotperm

 	ifperm

 	paginate

 	
 	TemplateRendererMixin (class in djem.utils.tests)

 	TimeZoneField (class in djem.forms)

 	(class in djem.models)

 	TimeZoneHelper (class in djem.utils.dt)

 	today() (djem.utils.dt.TimeZoneHelper method)

 	tz (djem.utils.dt.TimeZoneHelper attribute)

U

 	
 	unarchive() (djem.models.Archivable method)

 	unarchived() (djem.models.ArchivableQuerySet method)

 	UNDEFINED (in module djem)

 	update() (djem.models.AuditableQuerySet method)

 	(djem.models.VersionableQuerySet method)

 	
 	update_or_create() (djem.models.AuditableQuerySet method)

 	user (djem.forms.AuditableForm attribute)

 	UserSavable (class in djem.forms)

V

 	
 	Versionable (class in djem.models)

 	
 	Versionable.AmbiguousVersionError

 	VersionableQuerySet (class in djem.models)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Djem Documentation

 		
 Object-Level Permissions

 		
 Introduction

 		
 Enabling

 		
 Supported permissions

 		
 Defining permissions

 		
 Permissions default open

 		
 Checking Permissions

 		
 Protecting views

 		
 Checking in templates

 		
 Checking via User instances

 		
 Caching

 		
 Advanced Features

 		
 Superusers

 		
 Clearing the permission cache

 		
 Automatically logging permission checks

 		
 Instance-based Logging

 		
 Nested logs

 		
 Duplicate names

 		
 Persistence

 		
 Thread safety

 		
 Models

 		
 Auditable

 		
 Usage

 		
 Default values

 		
 Maintaining accuracy

 		
 Ownership checking

 		
 Archivable

 		
 Usage

 		
 Archiving and unarchiving

 		
 Filtering shortcuts

 		
 Versionable

 		
 Usage

 		
 Incrementing version

 		
 Mixing Mixins

 		
 StaticAbstract

 		
 Usage

 		
 TimeZoneField

 		
 Usage

 		
 Available Timezones

 		
 TimeZoneHelper

 		
 Rendering Forms

 		
 form_field

 		
 checkbox

 		
 Extra CSS classes

 		
 Extra HTML attributes

 		
 Rendering in bulk

 		
 Pagination

 		
 In the view

 		
 Usage

 		
 Controlling page length

 		
 In the template

 		
 AJAX

 		
 Checking authentication

 		
 Responding to AJAX requests

 		
 Usage

 		
 CSRF

 		
 Library support

 		
 XSS

 		
 The messages framework

 		
 Testing

 		
 Test-only models

 		
 Enhanced request factory

 		
 Rendering string-based templates

 		
 Utils

 		
 UNDEFINED

 		
 API Reference

 		
 Model Mixins and QuerySets

 		
 Mixins

 		
 QuerySets

 		
 StaticAbstract

 		
 Model Fields

 		
 TimeZoneField

 		
 Form Classes and Mixins

 		
 UserSavable

 		
 AuditableForm

 		
 Form Fields

 		
 TimeZoneField

 		
 Auth

 		
 ObjectPermissionsBackend

 		
 permission_required

 		
 PermissionRequiredMixin

 		
 Pagination

 		
 get_page

 		
 Middleware

 		
 MessageMiddleware

 		
 AJAX

 		
 ajax_login_required

 		
 AjaxResponse

 		
 Template Tags

 		
 ifperm

 		
 ifnotperm

 		
 csrfify_ajax

 		
 paginate

 		
 form_field

 		
 checkbox

 		
 Utils

 		
 General Utils

 		
 Date/Time Utils

 		
 Test Utils

 		
 Settings

 		
 DJEM_AUDITABLE_REQUIRE_USER_ON_SAVE

 		
 DJEM_DEFAULT_403

 		
 DJEM_DEFAULT_PAGE_LENGTH

 		
 DJEM_FORM_FIELD_TAG

 		
 DJEM_UNIVERSAL_OLP

 		
 DJEM_PERM_LOG_VERBOSITY

 		
 Exceptions

 		
 Change Log

 		
 0.8.0 (2022-12-12)

 		
 0.7.2 (2021-10-05)

 		
 0.7.1 (2021-08-25)

 		
 0.7 (2021-08-24)

 		
 0.6.4 (2018-12-06)

 		
 0.6.3 (2018-12-06)

 		
 0.6.2 (2018-03-25)

 		
 0.6.1 (2018-03-02)

 		
 0.6 (2018-03-02)

 		
 0.5 (unreleased)

 		
 0.4.3 (2016-09-17)

 		
 0.4.2 (2016-06-21)

 		
 0.4.1 (2016-06-21)

 		
 0.4 (2016-06-21)

 		
 0.3 (2016-03-19)

 		
 Pre-0.3

_static/ajax-loader.gif

